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ABSTRACT

Automatic detection of an individual’s native language (L1) based
on speech data from their second language (L2) can be useful for
informing a variety of speech applications such as automatic speech
recognition (ASR), speaker recognition, voice biometrics, and com-
puter assisted language learning (CALL). Previously proposed sys-
tems for native language identification from L2 acoustic signals rely
on traditional feature extraction pipelines to extract relevant features
such as mel-filterbanks, cepstral coefficients, i-vectors, etc. In this
paper, we present a fully convolutional neural network approach that
is trained end-to-end to predict the native language of the speaker
directly from the raw waveforms, thereby removing the feature ex-
traction step altogether. Experimental results using this approach on
a database of 11 different L1s suggest that the learnable convolu-
tional layers of our proposed attention-based end-to-end model ex-
tract meaningful features from raw waveforms. Further, the attentive
pooling mechanism in our proposed network enables our model to
focus on the most discriminative features leading to improvements
over the conventional baseline.

Index Terms— end-to-end learning, native language identifica-
tion, raw waveform processing, deep convolutional networks, atten-
tive pooling

1. INTRODUCTION

The task of native language identification (NLI) aims at recogniz-
ing the native language (L1) of a speaker given their speech in a
second language (L2). L1 information can support improved perfor-
mance for speech processing tasks such as automatic speech recog-
nition (ASR) [1, 2, 3] and speaker recognition. In addition, knowl-
edge of a language learner’s L1 can be potentially used to aid adap-
tive computer-assisted language learning systems in providing L1-
specific training and customized feedback to the learner. Non-native
speech frequently exhibits characteristic patterns due to the influ-
ence of a speaker’s L1 that distinguish it from native speech, such
as a distinct foreign accent, typical pronunciation errors, and pat-
terns of intonation and duration. Capturing common characteristics
that each group of L1 speakers maintains while speaking an L2 can
enable adaptation and improved performance of interactive voice ap-
plications thereby improving the interaction between users and ma-
chines.

Past attempts at L1 detection from speech have relied on the
use of classic front-end features such as filter banks, Mel-frequency
cepstral coefficients (MFCC), and Perceptual linear predictive co-
efficients (PLP). In addition, features such as phoneme confusions,
short term prosody-dynamics on the phone-level, and lexical features

such language usage errors are popularly used for L1 detection from
L2 speech. The best performing systems developed for the Com-
putational Paralinguistics Challenge (ComParE) [4] at Interspeech
2016, which provided a venue for the comparison of multiple com-
peting NLI systems, employed i-vector based approaches [5, 6, 7],
and achieved approximately 70% or higher accuracy for identifica-
tion of the 11 L1 languages. Spectrogram-based approaches for NLI
built for the ComParE challenge were much inferior in performance,
and only achieved accuracy rates in the range of 45%-58% [8, 9, 10].
Conventional systems for speech-based NLI consist of probabilis-
tic models such as a Gaussian mixture model universal background
model (GMM-UBM), or an i-vector framework as the front-end fol-
lowed by a back-end scoring model using the cosine-similarity met-
ric, linear discriminant analysis (LDA), or probabilistic linear dis-
criminant analysis (PLDA). In recent years, a great deal of atten-
tion has been paid to end-to-end learning from spectral features for
ASR [2, 11], spoken language understanding (SLU) [12, 13, 14] and
speaker verification [15, 16]. Most recent efforts aimed at end-to-
end modeling from spectral features with attention-based neural net-
works [17] tried to combine feature representation learning from fil-
terbanks and predictive modeling in a single system as opposed to
the traditional i-vector system where both are implemented as sep-
arate components. The proposed system achieved promising results
when compared to i-vector based systems.

Deep learning has been progressively gaining recognition in
numerous speech-related tasks as a viable alternative to classical
front-end spectral and cepstral features such as MFCC, PLP and
filter banks [18, 19, 20, 21]. Rather than assuming that these front-
ends are universally applicable to multiple speech classification
tasks, recent advances in neural network architectures have opened
up possibilities for joint optimization of the front-end feature ex-
traction/representation and the back-end modeling and classification
targeted at ASR [22, 23, 19], speaker recognition [18] and emotion
recognition [24, 25]. In addition, deep architectures that operate on
raw speech signals may facilitate the learning of low-level represen-
tations that are more customized for specific tasks.

Previous work on NLI has mostly focused on i-vector based ap-
proaches, with limited efforts on spectral-based systems. However,
to our knowledge, there has been no work examining NLI directly
from raw waveforms. In this paper, we propose and study attention-
based very deep 1-D CNN models that process time-series wave-
forms to predict the L1 class of the speaker from English speech.
Our study shows that the best end-to-end model with fewer model
parameters can outperform the conventional i-vector system by cap-
turing speech commonalities across L1s using an attentive pooling
mechanism.



2. END-TO-END NLI FROM RAW WAVEFORM

End-to-end NLI is analogous to an audio classification task that takes
the time-domain L2 signal and maps the feature vector into one of
the L1 classes c ∈ (c1, c2, ..., cn). We train our network to estimate
the posterior probability P (c|x) where x = (x1, x2, ..., xt) is the
input signal represented as a 1-D vector. The class with the highest
prediction probability is selected as the recognized L1 of the speaker.

2.1. Fully Convolutional Neural Networks

The first layer in our architecture operates over the raw time-domain
waveform to perform a set of time-domain convolutions between the
input waveform and some filters which can be thought of as a finite
impulse-response (FIR) filterbank. The first layer is the most crucial
part of waveform-based models as it deals with high-dimensional in-
puts. This layer is also more susceptible to vanishing gradient prob-
lems, especially when employing very deep architectures. Each con-
volution operation on a small window of the raw speech signal x[n]
is defined as:
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where h[n] represents the filter of length L, and y[n] is the filtered
output. We chose a large receptive field in our first convolutional
layer based on our sampling rate to mimic a bandpass filter. As our
waveforms are sampled at an audio sampling rate of 16kHz, we se-
lected a filter size of 160 to cover a duration of 10 ms. This layer is
followed by convolutional layers with smaller receptive fields but a
relatively larger number of filters to extract higher-level features.

Table 1 outlines the architectures of the proposed raw-waveform
CNN with 5 layers (CNN-5), the very deep CNN with 18 layers
(VDCNN-18), and the residual network with 34 layers (ResNet 34).
We have added Batch Normalization [26] layers to prevent the gra-
dients from getting too small or too large by normalizing data across
each batch, thereby mitigating the impact of vanishing gradient prob-
lems commonly encountered during training of very deep architec-
tures. We do not add any dropout layers as batch normalization can
provide a regularizing effect to reduce overfitting and speed up the
convergence of the network. After batch normalization, the output
of each filter is passed through a ReLU activation (a half-wave recti-
fier) to lower the computational cost. Max-pooling layers with stride
of 4 are applied to reduce the dimensionality of the feature maps and
extract invariant features.

We adopt the following design strategies in the convolutional
layers: (i) for the same output feature map size, the layers have the
same number of filters; and (ii) when the feature map size is reduced
by a factor of 4 via max pooling, the number of filters is doubled in
order to preserve the computational complexity per layer. Our de-
sign of a fully convolutional network without any fully connected
layers will have far fewer parameters when compared to a similar
network that includes fully connected layers. This is also substan-
tiated by [27] which indicated that fully connected layers may not
be required in a neural network that processes raw audio data as the
input. Additionally, [28] make a strong case for the use of convo-
lutional layers instead of fully connected layers in a neural network
that processes raw audio data as the input. At the end of our network
we use a Global Average Pooling (GAP) layer that averages the ac-
tivations along the time dimension followed by a softmax layer that
generates the probabilities for each L1 class.

Table 1. Architectures of proposed fully convolutional networks. In
the table every layer is represented as {filter width, # filters} while
× represents number of layers of same configuration

CNN-5 VDCNN-18 ResNet 34

{160, 128} {160, 64} {160, 48}
Maxpooling: 4× 1

{3, 128} {3, 128} × 4

3, 48

3, 48

× 3

Maxpooling: 4× 1

{3, 256} {3, 256} × 4

3, 96

3, 96

× 4

Maxpooling: 4× 1

{3, 512} {3, 256} × 4

3, 192

3, 192

× 6

Maxpooling: 4× 1

{3, 512} × 4

3, 384

3, 384

× 3

Global Average/ Attentive Pooling
Softmax

2.2. Residual Learning

We experiment with ResNets [29] to investigate the performance of
training deeper networks with up to 34 layers. Generally, in a tra-
ditional network the layers are trained to learn the true distribution
H(x), where x is the input to the layers. In a residual block, lay-
ers are approximated to learn the residual mapping, R(x), where
R(x) = H(x)− x. In residual networks (ResNets), residuals are
expressed via skip connections between layers as shown in Figure
1. Residual mapping speeds up learning by reducing the impact of
vanishing gradients, as there are fewer layers to propagate through.

2.3. Attentive pooling

Attention in CNNs has been mainly implemented as attentive pool-
ing, i.e., applied to the pooling layer. Simple global pooling methods
like average or max pooling are typically adopted in fully convolu-
tional networks. Using these pooling methods, feature maps can be
efficiently projected to 1-dimensional vectors. However, as these
methods treat all input data equally, i.e., they weigh the contribu-
tion of each instance equally, it is possible that they tend to skip
some salient features, thereby potentially affecting the quality of
the prediction results. Within time-domain waveforms, certain re-
gions may be more valuable in predicting L1s. Thus, we experi-
ment with an attention-based pooling mechanism in our architecture
to achieve more optimal prediction. We adopt the strategy similar
to that proposed in other speech processing tasks [30, 31, 32]. Let
x = (x1, x2, , xT ) represent the high-level feature representation
at the output of the final CNN layer before global average pooling
where T is the length of x. We compute the importance weight ei
for the feature representation xi using the equation:

ei = vT tanh(Wxi + b), i = 1, ..., T (2)



Fig. 1. Residual block used in ResNet-34

We then use a softmax function to compute the normalized
weight αi as:

αi =
exp(ei)∑T

k=1 exp(ek)
(3)

The normalized score is then used as the weight in the pooling
layer to compute the weighted average vector:

µ̃ =

T∑
i=1

αixi (4)

The weighted average vector focuses on the elements that are
of most importance thereby making the vector representation more
L1-discriminative.

3. EXPERIMENTS

3.1. Corpora

We use a corpus of non-native English speech collected during a
high-stakes global assessment of English language proficiency. This
corpus is a more comprehensive version of the Native Language sub-
challenge corpus used for ComParE Challenge at Interspeech 2016
[4]. The corpus consists of spoken responses from 11,000 non-native
speakers with 11 different L1 backgrounds: Arabic (ARA), Chinese
(CHI), French (FRE), German (GER), Hindi (HIN), Italian (ITA),
Japanese (JAP), Korean (KOR), Spanish (SPA), Telugu (TEL) and
Turkish (TUR). Each response is approximately 45-60 seconds long.
The [17] contains approximately 138 hours of speech sampled at 16
kHz. There are approximately 1,000 speech recordings for each L1
in the dataset. The data is partitioned as follows with no overlapping
speakers: 7,040 recordings are used for training, 1,760 recordings
for validation, and 2,200 recordings for evaluating performance of
our models. The test set contains 200 responses for each L1.

3.2. Experimental Setup

3.2.1. End-to-end raw waveform models

We used very long speech sequences of 45 seconds in duration (ap-
proximately 720,000 samples at 16kHz) as input to the deep net-
works as a majority of the recordings in the corpus are around 45
seconds long. The waveforms are mean-variance normalized at the
utterance level. We tried different speech sequence lengths ranging

from 10s to 45s and achieved the best performance by using the full
45-second segments. The architectures for the raw waveform models
are shown in Table 1. The kernel weights in each CNN layer of all
fully convolutional networks are initialized using a Glorot uniform
distribution [33] and regularized using l2-regularization. All end-to-
end raw waveform models are trained using Keras with a Tensorflow
backend on two CUDA-enabled GPUs. The networks are trained for
200 epochs with a batch size of 32 samples. All waveform mod-
els are trained using categorical cross-entropy as the cost function
and optimized using a Stochastic Gradient Descent (SGD) optimizer
with drop-based learning rate decay and momentum of 0.8. An ini-
tial learning rate of 0.1 is used in our experiments and the learning
rate decay function is implemented such that the learning rate (lr) is
dropped by one half every 10 epochs:

lr = intial lr ∗ dropfloor(epoch/epoch drop) (5)

We present our experiments with 5, 18 and 34 layers in Section
4. Overall, we experimented with different numbers of layers, num-
bers of filters, and filter sizes. The architectures with the parameters
reported in the paper achieved the highest performance rates com-
pared to the other models that were investigated.

3.2.2. End-to-end filterbank models

We compare the performance of Mel-filterbank features in neural
networks and raw waveforms. [17] proposed an attention-based
three layer pyramidal Bidirectional Gated Recurrent Unit (pBGRU)
architecture referred to as Listen, Attend and Identify (LAI), an
architecture inspired from the state-of-the-art ASR model in [22].
We use this model as a baseline for comparison. The Listen encoder
consists of three pBGRU layers with 512 nodes i.e. 256 nodes in
each direction. The weights in all pBGRU layers are initialized
using the Glorot-Bengio initializer and Hyperbolic Tangent (tanh)
activation. A dropout layer with a dropout rate of 30% is added
after each pBGRU layer to avoid overfitting. The acoustic encoder
is followed by the identifier, an attention-based classifier that applies
attention to the output of the listener. The attention layer is followed
by a fully connected feed-forward layer with softmax activation with
a hidden size of 11 corresponding to the 11 L1 classes. The model
is trained using categorical cross-entropy criterion and optimized
using Adam optimizer [34] with a learning rate of 0.0005.

For consistency with the CNN experiments, we also include re-
sults in Section 4 from a CGDNN model [17, 11] that consists of a
combination of 2D CNN layers and Gated Recurrent Units (GRU)
to perform temporal and frequency modeling followed by two fully
connected layers. The first layer is a 2D convolution layer with 16
output filters in the convolution, kernel size of 7 × 7 followed by a
max pooling layer of pooling size 6× 6. The second 2D CNN layer
has kernel size of 5 × 5 and 32 output filters. The next two CNN
layers have kernel size of 3 × 3 and 32 output filters. The last three
CNN layers are each followed by a max pooling layer of pooling size
3 × 1. All CNN layers use Rectified linear unit (ReLU) activation.
The CNN network is connected to a linear layer with 128 nodes to
reduce the dimensionality of the feature vector. This is followed by
two GRU layers each with 256 nodes. The last GRU layer is fol-
lowed by an attention layer connected to a feed-forward layer with
32 nodes followed by a fully connected softmax layer with 11 output
nodes.

Results of a simple CNN network with the first 4 CNN lay-
ers of the CGDNN model which formed a baseline in [17] are also
shown in Section 4. Adding more layers did not improve the perfor-
mance of the CNN architecture. The CGDNN and CNN networks



are both trained using an SGD optimizer with a drop-based learn-
ing rate decay as shown in Equation 5. All the models described in
this section use a cross-layer attention mechanism that yielded the
best performance in [17] where the attention vector is computed as
the weighted average of the final layer outputs of the encoder net-
work but with weights computed using the second-to-last layer. [17]
provides complete architecture details for these systems.

3.2.3. i-vector system

A GMM-based i-vector system is used as the baseline NLI sys-
tem. Here an energy-based voice activity detection (VAD) method
is applied to detect non-speech segments within utterances. 20-
dimensional MFCCs including c0 were extracted from the resultant
speech segments via a 20ms Hamming window with a 10ms time
shift. MFCCs are appended with their first and second derivatives.
Utterance-based cepstral mean normalization was performed on the
acoustic feature vectors. A GMM with 2,048 Gaussian kernels and
a full covariance matrix was trained as the Universal Background
Model (UBM) by using the corpus described in Section 3.1 for
training. The same training set was also used to train an i-vector
extractor T-matrix, i.e., a low rank rectangular matrix called the
total variability matrix, as well as Probabilistic Linear Discriminant
Analysis (PLDA) projection matrices. We employed PLDA as a
scoring method for L1 recognition, where we calculated the log
likelihood rate (LLR) for the i-vector of each testing utterance and
those of target L1s and select the one with the highest LLR as the
recognized L1.

3.2.4. x-vector system

X-vectors, or DNN-based speaker embeddings, are now trending
as state-of-the-art systems in speaker recognition. We present pre-
liminary results using the Kaldi x-vector system recipe [35]. The
input features to the DNN are 30-dimensional filterbanks using a
25ms Hamming window. 30 MFCCs were calculated every 10ms
and this feature vector was mean-normalized over a sliding window
of up to 3 seconds. We used the energy-based VAD as used in the
i-vector baseline in Section 3.2.3 to filter out non-speech frames.
The DNN architecture is depicted in Table 2. The first part of the
DNN contain 5 layers of a time-delay architecture that operates at the
frame-level. The first 4 layers contain 512 neurons each and the fifth
layer contains 1500 neurons. This is followed by a statistics pooling
layer which the computes its mean and standard deviation over all
frame-level outputs. A single vector of aggregated means and stan-
dard deviations is propagated through two hidden layers with ReLU
non-linearity consisting of 512 neurons each and a softmax output
layer. The embeddings are extracted from the sixth layer of the DNN
framework and are centered and projected using LDA with dimen-
sionality equal to 150. After dimensionality reduction, the represen-
tations are length-normalized and modeled by PLDA to compute the
LLR for each test utterance similar to the scoring method mentioned
in Section 3.2.3.

3.2.5. Fusion of end-to-end models and i-vector baselines

[17] demonstrated that filterbank-based neural network models are
able to learn complementary representations from speech data when
compared to i-vector system. We investigate whether raw-waveform
models are able to capture different representations and if a com-
bination of models can yield higher performance in this work. We
performed score-level fusion of posterior probabilities produced by

Table 2. The embedding DNN configuration. x-vectors are extracted
at layer segment6, before the nonlinearity. The L in the softmax layer
corresponds to the number of L1s

Layer Layer context Total context Input x output
frame1 [t− 2, t+ 2] 5 150× 512
frame2 {t− 2, t, t+ 2} 9 1536× 512
frame3 {t− 3, t, t+ 3} 15 1536× 512
frame4 {t} 15 512× 512
frame5 {t} 15 512× 1500
stats pool [0, T ) T 1500T × 3000
segment6 {0} T 3000× 512
segment7 {0} T 512× 512
softmax {0} T 512× L

Table 3. Performance (%) of different raw waveform models on the
test set of the 11 L1 corpus

Method w/o attentive pooling attentive pooling

CNN-5 65.34 65.51
ResNet 34 75.55 78.05

VDCNN-18 78.68 80.73

the end-to-end models and normalized LLRs (by z-score) generated
by the PLDA scoring model using a Multilayer Perceptron (MLP)
classifier to predict the L1 classes. The fusion network consists of 2
fully connected layers each with 200 hidden units and ReLU activa-
tion connected to a softmax layer with 11 hidden units. The network
is optimized using an SGD optimizer with an initial learning rate
of 0.001, momentum of 0.9, and Nesterovs Accelerated Momentum
update [36, 37]. The fusion model is trained using the validation set
mentioned in Section 3.1.

4. RESULTS AND DISCUSSION

Table 3 illustrates the performance in terms of accuracy of differ-
ent raw waveform-based CNN models with and without attentive
pooling on the test of 11 L1s. We observed that attentive pool-
ing contributed to significant performance improvements in ResNet
34 and VDCNN-18 models and a minor improvement in CNN-5
model. The performance of VDCNN-18 was improved from 78.68%
to 80.73% with attentive pooling while the performance of ResNet
34 was improved from 75.55% to 78.05% with attentive pooling.
Our proposed VDCNN-18 model with attentive pooling achieved
the highest accuracy of 80.73%. The VDCNN-18 network performs
better than ResNet 34 and therfore indicates that adding more lay-
ers does not help improve performance. From our experiments with
different number of layers ranging from 3 to 18, we noticed that the
performance improved linearly with an increase in layers and the
best performance was attained at 18 layers.

We compare the performance of different baseline models dis-
cussed in Section 3.2 with our best proposed models in Table 4. The
performance of the NLI systems are evaluated using accuracy and
Unweighted Average Recall (UAR), which was the metric used for
the 2016 ComParE challenge. The preliminary results using the x-
vector framework (51.86%) show that its performance is much infe-
rior to that of the i-vector system (79.72%). Therefore we use the
i-vector system as our baseline system. X-vectors are generally seen



Fig. 2. Confusion matrix of the i-vector baseline system results on
the test set of 11 L1s (rows: references; column: hypotheses)

Fig. 3. Confusion matrix of raw-waveform VDCNN-18 results on
the test set of 11 L1s (rows: references; column: hypotheses)

to show significant improvements for speaker and language recogni-
tion task with data augmentation as seen in [38, 39]. Specifically for
the task of language recognition, [38] demonstrated that embeddings
computed using bottle-neck features extracted from ASR DNN as in-
put to the x-vector framework show significant improvements over
the MFCC features. To limit the scope of this paper, we will explore
the performance with data augmentation and other input features to
the x-vector DNN in future work.

VDCNN-18 with attentive pooling outperforms all the base-
line models. VDCNN-18, both with and without attentive pooling
performs substantially better than the best previously published
filter-bank model, LAI, indicating that our fully convolutional raw-
waveform model is able to extract more discriminative feature
representations for L1 recognition. With the integration of attentive
pooling, VDCNN-18 is able to show approximately 1% improve-
ment over the i-vector baseline.

Confusion matrices for the results on the test set of 11 L1s using
the i-vector baseline, VDCNN-18 without and with attentive pooling
are shown in Figures 2, 3 and 4, respectively. The most separable L1s
for the i-vector system are French (FRE), Spanish (SPA) and Turkish
(TUR) which can achieve F1 scores 0.91, 0.845, 0.83 respectively.
In particular, VDCNN-18 shows strong improvements on Chinese

Fig. 4. Confusion matrix of raw-waveform VDCNN-18 with atten-
tive pooling results on the test set of 11 L1s (rows: references; col-
umn: hypotheses)

Table 4. The accuracy performance (%) of different NLI systems on
the test set of 11 L1 corpus

Method Acc (%) UAR (%) Parameters

Majority vote 9.00 8.26
x-vector system 51.86 51.81 ∼ 11M
2D CNN (fbank) 60.45 61.13 ∼ 0.63M
CGDNN (fbank) 70.18 70.80 ∼ 0.73M
LAI (fbank) 71.72 71.42 ∼ 4.46M
VDCNN-18 (wave) 78.68 78.86 ∼ 3.69M
i-vector baseline 79.72 81.59 ∼ 32M
VDCNN-18 (attn) 80.73 80.81 ∼ 3.94M

(CHI), German (GER), Korean (KOR) and slightly better perfor-
mance for Turkish (TUR), with F1 scores of 0.89, 0.88, 0.87 and
0.845, respectively. For Turkish recognition, VDCNN-18 performs
slightly better than the i-vector system. Both systems seem to per-
form similarly worse for Hindi (HIN) recognition but perform better
on Telugu recognition (TEL). Hindi can be easily confused with Tel-
ugu as the two languages share many similarities in pronunciation.
While the i-vector system is seen to outperform VDCNN-18 with-
out attentive pooling for Arabic (ARA), French (FRE), Italian (ITA)
and Spanish (SPA) recognition, we observed that attentive pooling
in VDCNN-18 supports improvements for recognition of these L1s.
We notice, that with attentive pooling, VDCNN-18 continues to per-
form consistently on recognition of L1s that were most distinguish-
able without attentive pooling and further improves the recognition
of the under-performing L1s, and hence thereby improves the overall
prediction performance.

We also report the number of parameters for the models in Table
4. With reasonably fewer parameters, our best raw waveform model
is able to outperform the i-vector baseline. The VDCNN-18 model
has approximately 8 times fewer parameters than the i-vector sys-
tem. Our filter-bank-based CGDNN and CNN models have 5 times
and 6 times fewer parameters than VDCNN-18, however they per-
form around 10% and 20% worse respectively than VDCNN-18 and
i-vector systems indicating waveform based VDCNN-18 model is
better suited to the NLI task.

Since we observe from Figures 2, 3 and 4 that VDCNN-18 per-
forms better for a complementary set of languages as compared to



Table 5. The F1-score of individual L1s on 11 L1s recognition.

L1s i-vector VDCNN-18 VDCNN-18
Baseline (w/o attn pool) (w/ attn pool)

ARA 0.79 0.725 0.765
CHI 0.75 0.88 0.89
FRE 0.91 0.75 0.835
GER 0.81 0.865 0.89
HIN 0.645 0.69 0.64
ITA 0.825 0.74 0.765
JPN 0.785 0.815 0.81
KOR 0.825 0.83 0.9
SPA 0.845 0.735 0.775
TEL 0.755 0.78 0.77
TUR 0.83 0.81 0.84

Table 6. The accuracy obtained by different fusion systems on the
test set of 11 L1 corpus

Fusion system Accuracy (%)
LAI + i-vector 82.27
CGDNN + i-vector 83.14
LAI + CGDNN + i-vector 83.32
VDCNN-18 + i-vector 85.36
VDCNN-18 + attentive pooling + i-vector 86.05

the i-vector system, we demonstrate the results of a fusion of the
i-vector system with VDCNN-18 in Table 6 to see if we can get ad-
ditional improvements. Fusion of VDCNN-18 with and without at-
tentive pooling and the i-vector system yielded 85.36% and 86.05%
accuracy, respectively. Also the fusion result of VDCNN-18 (atten-
tive pooling) + i-vector system is approximately 3% better than LAI
+ CGDNN + i-vector.

[20] proposed an analysis of the weights learned in the first layer
of a fully connected DNN that used raw waveforms as input. We fol-
low their approach to visualize the spectral properties of the learned
filters in the first convolutional layer of the raw waveform CNN.
Here the weight vector of each convolutional unit corresponds to
a mirrored impulse response of a filter with finite impulse response
(FIR). We perform Discrete Fourier Transform (DFT) of the weights
of each filter w(i,•) ∈ Rk to obtain the the magnitude spectrum of
the filter response as follows:

Wi = 20 · log10|DFT{w(i,•)}| 0 ≤ i < K (6)

where K corresponds to the number of convolutional filters. The
center frequency is estimated based on the position of the maximum
in the magnitude spectrum [20, 40] as:

f i
c = argmax

1≤j≤8000
{Wi,j} (7)

The rows inWi are reordered by the estimated filter center frequency
such that fΠ(0)

c ≤ f
Π(1)
c ≤ ... ≤ f

Π(K−1)
c , where Π(i) represents

the permutation of the filter indices. Figure 5 shows the correspond-
ing magnitude spectra of the learned filters ordered by the center
frequencies. The number of band pass filters is relatively high in
the lower frequency region and the bandwidth of the filters becomes
larger with increasing center frequency. The distribution of center

Fig. 5. Spectrum visualization of learned filters (ordered by the cen-
ter frequencies) in first CNN layer of the VDCNN-18 network. Y-
axis represents the index of the filter ranging from 1 to 64, and x-
axis represents the frequency ranged from 0 to half the sampling rate
i.e. 8kHz. Each row in the heatmap (y-axis) represents one filter and
each column, a frequency interval of 205Hz (ranging from 0 to 8kHz
on the x-axis).

frequencies is also non-linear. It can be seen from this representa-
tion that CNN has learned band-pass like filters that resemble the
audiological distribution that is implemented in classical front-end
feature extraction pipelines like MFCC, PLP, etc.

5. CONCLUSION

In this paper, we experimented with different end-to-end fully convo-
lutional architectures for automatic L1 recognition from time-series
waveform. The proposed models are fully convolutional and are
trained end-to-end to determine the L1 class of the speaker from the
raw waveform. Our results demonstrate that all our raw waveform-
based networks can perform significantly better than the models that
use filterbank features as input. In particular, our best proposed
attention-based VDCNN-18 model can outperform the traditional
i-vector system by achieving 80.73% accuracy with far fewer pa-
rameters in the model. This indicates that our model is able to
learn feature representations that are more discriminative and better
than classic log Mel-filterbanks or i-vectors. The best proposed raw-
waveform model is optimized for size with 8 times fewer parameters
than the i-vector system. Further, our experimental results also show
a significantly improved performance of end-to-end models with an
attentive pooling mechanism in the framework. Finally, fusing the
i-vector system with the end-to-end waveform system leads to a fur-
ther significant improvement. Future work will involve designing
more compact models with fewer model parameters for L1 recog-
nition than those discussed in this work and exploring ways to en-
hance the performance of our proposed models further. We will also
explore an extension of our very deep CNN networks to handle L1
recognition of more languages using raw waveforms.
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