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Acoustic Denoising Using Dictionary Learning With
Spectral and Temporal Regularization

Colin Vaz , Vikram Ramanarayanan , and Shrikanth Narayanan

Abstract—We present a method for speech enhancement of data
collected in extremely noisy environments, such as those obtained
during magnetic resonance imaging scans. We propose an algo-
rithm based on dictionary learning to perform this enhancement.
We use complex nonnegative matrix factorization with intrasource
additivity (CMF-WISA) to learn dictionaries of the noise and
speech+noise portions of the data and use these to factor the noisy
spectrum into estimated speech and noise components. We aug-
ment the CMF-WISA cost function with spectral and temporal
regularization terms to improve the noise modeling. Based on both
objective and subjective assessments, we find that our algorithm
significantly outperforms traditional techniques such as least mean
squares filtering, while not requiring prior knowledge or specific
assumptions such as periodicity of the noise waveforms that cur-
rent state-of-the-art algorithms require.

Index Terms—Real-time MRI, noise suppression, complex NMF,
dictionary learning.

I. INTRODUCTION

T ECHNOLOGICAL applications using speech are ubiqui-
tous, and include speech-to-text systems [1], emotional-

state detection [2], and assistive applications, such as hearing
aids [3]. The presence of background noise usually degrades the
performance of these systems, thus limiting their use to confined
environments or scenarios. Researchers are actively develop-
ing speech denoising methods to overcome these barriers. Such
methods include signal subspace approaches [4], model-based
methods [5], and spectral subtraction algorithms [6]. These dif-
ferent techniques make specific assumptions about the noise
or SNR levels, and give a certain trade-off between noise sup-
pression and speech distortion. This trade-off is particularly
important when denoising speech for speech science analysis.

This paper focuses on denoising speech audio obtained dur-
ing magnetic resonance imaging (MRI) scans, a major moti-
vation arising from speech science and clinical applications.
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Speech science researchers use a variety of methods to study
articulation and the associated acoustic details of speech pro-
duction. These include Electromagnetic Articulography [7] and
x-ray microbeam [8] methods that track the movement of ar-
ticulators while subjects speak into a microphone. Data from
these methods offer excellent temporal details of speech pro-
duction. Such methods, however, are invasive and do not offer
a full view of the vocal tract. On the other hand, methods using
real-time MRI (rtMRI) offer a non-invasive method for imaging
the vocal tract, affording access to more structural details [9].
Unfortunately, MRI scanners produce high-energy broadband
noise that corrupts the speech recording. This affects the ability
to analyze the speech acoustics resulting from the articulation
and requires additional schemes to improve the audio quality.
Another motivation for denoising speech corrupted with MRI
scanner noise arises from the need for enabling communication
between a patient and a provider during scanning.

The Least Mean Squares (LMS) algorithm is a popular tech-
nique for signal denoising. The algorithm estimates the filter
weights of an unknown system by minimizing the mean square
error between the denoised signal and a reference signal. This
approach removes noise from the noisy signal very well, but
severely degrades the quality of the recovered speech [10].
Bresch et al. proposed a variant to the LMS algorithm in [11] to
remove MRI noise from noisy recordings. This method, how-
ever, uses knowledge of the MRI pulse sequence to design an
artificial reference “noise” signal that can be used in place of
a recorded noise reference. We found that this method outper-
forms LMS in denoising speech corrupted with noise from cer-
tain types of pulse sequences. Unfortunately, it performs rather
poorly when the noise frequencies are spaced closely together
in the frequency domain. Furthermore, the algorithm creates a
reverberant artifact in the denoised signal, which makes speech
analysis challenging. The LMS formulation assumes additive
noise, so these algorithms may not perform well in the presence
of convolutive noise in the signal, which we encounter during
MRI scans.

Recently, Inouye et al. proposed an MRI denoising method
that uses correlation subtraction followed by spectral noise gat-
ing [12]. Correlation subtraction finds the temporal shift that
maximizes the correlation between the noisy signal and a ref-
erence noise signal, and subtracts this shifted reference noise
from the noisy signal. The residual noise from this procedure
is removed by spectral noise gating, which uses the reference
noise to calculate a spectral envelope of the noise and attenuates
the frequency components of the noisy speech that are below
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the noise spectral envelope. Their method showed a high level
of noise suppression and low distortion, both desirable proper-
ties of a denoising algorithm. A drawback to their approach is
manual setting of the threshold in the spectral noise gating. Fur-
thermore, their algorithm assumes access to a reference noise
recording. As such, their algorithm would not be suitable for
use in single-microphone setups and would perform poorly if
speech leaks into the reference microphone.

We propose an algorithm for removing MRI scanner noise
using complex non-negative matrix factorization with intra-
source additivity (CMF-WISA) [13] with additional spectral
and temporal regularizations. CMF-WISA learns the dictionar-
ies and their associated time activation weights for the speech
and noise, which enables separation of the noisy signal into
speech and noise components. Unlike non-negative matrix fac-
torization (NMF), CMF-WISA also estimates the phases of the
speech and noise components, which improves source separa-
tion and reconstruction quality of the speech and noise compo-
nents. The initial version of the denoising algorithm and pre-
liminary results were presented originally in [14]. This paper
extends the original algorithm in three important ways:

� We switch from a sequential two-step algorithm of dictio-
nary learning and wavelet packet analysis to a single-step
dictionary learning-only method. This switch can enable
the development of a real-time version of the algorithm.

� We use CMF-WISA instead of NMF to use magnitude and
phase information about the signal when learning speech
and noise dictionaries.

� We incorporate spectral and temporal regularization in
the CMF-WISA cost function to better model spectro-
temporal properties of the MRI noise during speech
production.

A MATLAB implementation of this algorithm is available at
github.com/colinvaz/mri-speech-denoising.

This paper is organized as follows. Section II discusses prop-
erties of MRI noise. After providing a synopsis of the notations
we will use in this article in Section III and a brief overview
of NMF in Section IV, we describe the denoising algorithm in
Section V. Section VI discusses the experiments we conducted
and the evaluation metrics we used to evaluate the denoising
performance. Section VII gives insight into the parameter set-
tings for the proposed algorithm and Section VIII shows the
results of our method on data acquired from MRI scans and
artificially-created noisy speech. Finally, Section IX offers our
conclusions and directions for future work.

II. MRI NOISE

MRI scanners produce a powerful magnetic field that aligns
the protons in water molecules with this field. The MRI op-
erator briefly turns on a radio frequency electromagnetic field,
which causes the protons to realign with the new field. After
the electromagnetic field is turned off, the protons relax back
their alignment with the scanner’s magnetic field. The on and
off switching pattern of the electromagnetic field is called a
pulse sequence. The pulse sequence constantly realigns the pro-
tons, which causes a changing magnetic flux, and which in turn
generates a changing voltage within the receiver coils.

TABLE I
DESCRIPTION OF COMMON RTMRI (SEQ1, SEQ2, SEQ3, GA21, GA55, MULT)

AND STATIC 3D (ST3D) PULSE SEQUENCES

Pulse sequence usage Pulse
sequence

TR (ms) Number of
interleaves

f0 (Hz)

Real-time (dynamic) seq1 6.164 13 12.48

MRI (rtMRI) seq2 6.004 13 12.81
seq3 6.028 9 18.43
ga21 6.004 21 7.93
ga55 6.004 55 3.03

Multislice rtMRI mult 6.004 13 12.81

Static 3D MRI st3d 4.22 N/A N/A

During each pulse, the MRI scanner samples these changing
voltages in the 2-dimensional Fourier space (called k-space). In
real-time MRI (rtMRI), the pulses are repeated periodically to
get a temporal sequence of images. The period between each
repetition is called the repetition time (TR). Typically, the read-
out from multiple successive pulses are combined to form one
image because it improves the SNR and spatial resolution of
the image. The number of pulses that are combined to form
one image is called the number of interleaves. The number of
interleaves gives a trade-off between spatial and temporal res-
olution of the images; a higher number of interleaves increases
the spatial resolution but decreases the temporal resolution.

A primary source of MRI noise arises from Lorentz forces,
due to the pulse sequence, acting on receiver coils in the body
of an MRI scanner. These forces cause vibrations of the coils,
which impact against their mountings. The result is a high-
energy broadband noise that can reach as high as 115 dBA [15].
The noise corrupts the speech recording, making it hard to listen
to the speaker, and can obscure important details in speech.

MRI pulse sequences typically used in rtMRI produce peri-
odic noise because the pulse is repeated every TR. The funda-
mental frequency of this noise, i.e., the closest spacing between
two adjacent noise frequencies in the frequency spectrum, is
given by:

f0 =
1

TR× number of interleaves
Hz (1)

The repetition time and number of interleaves are scanning pa-
rameters set by the MRI operator. Choice of these parameters
inform the spatial and temporal resolution of the reconstructed
image sequence, as well as the spectral characteristics of the
acoustic noise generated by the scanner.

Table I provides a summary of the pulse sequences that we
will consider in this article and their properties. Importantly, the
periodicity property of the noise allows us to design effective
denoising algorithms for time-synchronized audio collected dur-
ing rtMRI scans. For instance, the algorithm proposed by Bresch
et al. [11] relies on knowing f0 to create an artificial “noise”
signal which can then be used as a reference signal by standard
adaptive noise cancellation algorithms. This algorithm has been
shown to effectively remove noise from some commonly-used
rtMRI pulse sequences, such as Sequences 1–3 (seq1, seq2,
seq3), and the multislice (mult) sequence listed in Table I.
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However, there are pulse sequences that do not exhibit this
exact periodic structure. In addition, there are other useful se-
quences that are either periodic with an extremely large period,
resulting in very closely-spaced noise frequencies in the spec-
trum (i.e. f0 is very small), or are periodic with discontinuities
that can introduce artifacts in the spectrum. To handle these
cases, it is essential that denoising algorithms do not rely on
periodicity. One example of such sequences which we will con-
sider in this article is the Golden Angle (GA) sequence [16],
which allows for retrospective and flexible selection of the tem-
poral resolution of the reconstructed image sequences (typical
rtMRI protocols do not allow this desirable property). We will
consider the ga21 and ga55 Golden Angle sequences in this
article. These two sequences, along with seq1, seq2, seq3, and
mult, constitute the rtMRI pulse sequences that this article fo-
cuses on.

In addition to using rtMRI for imaging speech dynamics, one
can use 3D MR imaging to capture a three-dimensional image
of a static speech posture. 3D pulse sequences scan the vocal
tract in multiple planes simultaneously. Such sequences can be
highly aperiodic, and like the GA sequences require a denoising
algorithm that does not rely on periodicity for proper denoising.
We will consider the st3d static 3D pulse sequence in this article
(see Table I). For further reading about MRI pulse sequences
and their use in upper airway imaging, see [16]–[18]. For an
example spectrogram of speech recorded with the seq3 pulse
sequence, see the top panel in Fig. 2.

III. NOTATION

Prior to introducing the algorithm, we lay out the notation
conventions and variables we will use throughout the paper for
clarity.

We denote scalars by lower case letters (eg. m, t), vectors by
bolded lower case letters (eg. x, µ), and matrices by upper case
letters (eg. V , W ). [V ]ij , [V ]j , and [V ]i,: denote the (i, j)th
entry, jth column, and ith row of V respectively. We use �
to denote element-wise product between two matrices and a
fraction involving two matrices (eg. A

B ) to denote element-wise
division. We define [A]+ = 1

2 (|A|+ A) as a matrix containing
only the positive values of A and [A]− = 1

2 (|A| −A) as a matrix
containing only the absolute value of the negative values of A.
The notation diag(x) is used to form a diagonal matrix with the
diagonal elements from vector x.

R, Rm×t , and Rm×t
+ denote the sets of real numbers, m× t

real-valued matrices, and m× t non-negative matrices respec-
tively. Similarly, C and Cm×t denote the sets of complex num-
bers and complex-valued matrices respectively.

Table II shows the key variables we will use consistently
throughout the manuscript as well as a brief description for
quick reference.

IV. NON-NEGATIVE MATRIX FACTORIZATION BACKGROUND

NMF is a commonly-used dictionary learning algorithm and
was first proposed by Paatero and Tapper [19], [20] and fur-
ther developed by Lee and Seung [21]. NMF factors a m× t
non-negative matrix X into a m× k basis matrix W and k × t
time-activation matrix H by minimizing the divergence between

TABLE II
KEY VARIABLES

Variable Meaning

ks , kd Number of basis elements in the speech and noise bases
td , tn Number of spectrogram frames of the noise-only and

noisy speech signals
Vs , Vd , V Complex-valued spectrograms of speech, noise-only,

and noisy speech signals
Ws , Wd , Wn Speech basis, noise basis learned on noise-only signal,

and noise basis learned on noisy speech
Hs , Hd , Hn Speech time-activation matrix, noise time-activation

matrix learned on noise-only signal, and noise
time-activation matrix learned on noisy speech

Ps , Pd , Pn Speech phase matrix, noise phase matrix learned on
noise-only signal, and noise phase matrix learned on
noisy speech

X and the product WH . Typical cost functions measure the
Frobenius norm [21], generalized Kullback-Leibler (GKL) di-
vergence [21], or Itakura-Saito (IS) divergence [22] between X
and WH . For audio, X is the magnitude or power of the short-
time Fourier transform (STFT) of the audio signal (also known
as a spectrogram), W is a dictionary of different spectral pat-
terns found in the spectrogram, and H indicates when and how
strongly the spectral patterns occur in the spectrogram. NMF
has two attractive properties: the factorization is interpretable
and its cost function can be minimized with multiplicative up-
dates. Unfortunately, using the magnitude or power spectrogram
discards phase information, which is useful for separating mul-
tiple sources, particularly if the sources have energy at similar
frequencies. Because the phase is discarded, NMF methods are
required to use the phase of the original mixture when recon-
structing the individual sources, which introduces distortion in
the reconstructed sources.

Kameoka et al. introduced complex non-negative matrix fac-
torization (CMF) to be able to use the complex-valued STFT
as the input V [23]. In addition to learning a basis matrix W
and time-activation matrix H , CMF also learns a phase matrix
Pi ∈ Cm×t corresponding to the ith basis vector and ith row in
H . CMF approximates the input as V ≈∑k

i=1[W ]i [H]i,: � Pi .
Thus, one uses the phase matrices corresponding to the elements
in the basis and time-activation matrix rather than the phase of
the original noisy signal. King and Atlas showed that recon-
structed sources from CMF have lower distortion and artifacts
than those from NMF [24]. One drawback of CMF is that it
has significantly more parameters than NMF because it esti-
mates a phase matrix for each basis vector. This results in high
computational load and memory requirements.

King et al. overcame this drawback with CMF-WISA [13].
Instead of estimating a phase matrix for each basis vector, CMF-
WISA calculates a phase matrix for each source (which is rep-
resented by multiple basis vectors). In this case, an input with q
sources is approximated as V ≈∑q

j=1(
∑

i∈Q(j ) [W ]i [H]i,:)�
Pj , where Q(j) is the set of indices of basis vectors and time-
activation rows corresponding to source j. Since the number
of sources is typically much less than the number of basis
vectors (q <

∑q
j=1 |Q(j)|), CMF-WISA has much fewer pa-

rameters than CMF without sacrificing the advantages of CMF
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over NMF. It should be noted that if the input contains only one
source (q = 1), then CMF-WISA is equivalent to NMF because
the phase matrix P1 will be the same as the phase of the input.
In this case, CMF-WISA learns W and H from the magnitude
spectrogram and returns the phase of the input matrix.

V. DENOISING ALGORITHM

We propose a denoising algorithm that uses CMF-WISA to
model spectro-temporal properties of the speech and noise com-
ponents. We also add spectral and temporal regularization terms
to better model the noise component. The following subsections
provide an overview of the algorithm, introduce the regulariza-
tion terms, and show the update equations used in the algorithm.

A. Algorithm Overview

We propose a denoising algorithm that uses CMF-WISA
to model spectro-temporal properties of the speech and MRI
noise and to faithfully recover the speech. We first use NMF
on the MRI noise to learn a noise basis Wd ∈ Rm×kd

+ and its
time-activation matrix Hd ∈ Rkd×td

+ . We obtain the noise-only
recording from the beginning 1 second of the noisy speech
recording before the speaker speaks (it is usually the case that
the speaker speaks at least 1 second after the start of the record-
ing). Alternatively, one can obtain a noise-only recording using a
reference microphone placed far away enough from the speaker
so that it does not record speech. We convert the noise signal to a
spectrogram Vd ∈ Rm×td

+ by taking the magnitude of the STFT
of the noisy speech with a 25-ms Hamming window shifted by
10 ms. NMF will approximate Vd by WdHd . NMF uses itera-
tive updates to learn the basis and time-activation matrix, so we
initialize Wd and Hd with random matrices sampled from the
uniform distribution on [0, 1].

After learning the noise basis, we use CMF-WISA with the
noisy speech complex-valued spectrogram V ∈ Cm×tn as the
input to separate into speech and noise components. We initial-
ize the basis matrix with W0 = [Ws Wd ], where Ws is a ran-
dom m× ks matrix from the uniform distribution and Wd is the
noise basis learned from the noise-only signal. We initialize the
time-activation matrix with Hn = [Hs

Hd
], where Hs ∈ Rks×tn

+

and Hd ∈ Rkd×tn
+ are random matrices from the uniform distri-

bution. We initialize the phase matrices for speech Ps ∈ Cm×tn

and noise Pn ∈ Cm×tn with the phase of the noisy spectro-
gram: exp(j arg(V )). After initialization, we run the CMF-
WISA algorithm for a fixed number of iterations, which ap-
proximates V with V̂ = V̂s + V̂n , where V̂s = WsHs � Ps and
V̂n = WnHn � Pn . We will show the update equations for the
basis, time-activation, and phase matrices in Section V-D. For
convenience, we define W = [Ws Wn ] as the concatenation of
the learned speech and noise dictionaries. Similarly, we define
H = [ Hs

Hn
] as the concatenation of the learned speech and noise

time-activation matrices.
Once CMF-WISA terminates, we reconstruct the speech com-

ponent. Generally, we have a better estimate of the noise com-
ponent than the speech component because we learn the noise
model from a noise-only signal, whereas we learn the speech

model from the noisy speech. Moreover, we apply regulariza-
tion terms (discussed in Sections V-B and V-C) to improve
the noise model. Consequently, we reconstruct the speech by
reconstructing the noise component and subtracting it from
the noisy speech. We form the complex-valued spectrogram
V̂n = WnHn � Pn and take the inverse STFT to reconstruct
the time-domain noise signal d̂. We subtract d̂ from the noisy
signal x to obtain the denoised speech ŝ = x− d̂.

B. Temporal Regularization

After running NMF on the noise-only signal, we have a noise
dictionary Wd and time-activation matrix Hd that models the
noise-only signal. We will use Wd and Hd for initializing the
noise dictionary Wn and time-activation matrix Hn that mod-
els the noise in the noisy speech. In order to model the noise
for the entire duration of the noisy speech, we assume that
the columns of Hd are generated by a multivariate log-normal
random variable. Then ln(Hd) consists of td samples drawn
from the normal distribution with mean µ ∈ Rkd and covari-
ance Σ ∈ Rkd×kd . Suppose that the columns of the log time-
activation matrix ln(Hn ) ∈ Rkd×tn for the noise component of
the noisy signal consist of tn samples drawn from the normal
distribution with mean m ∈ Rkd and covariance S ∈ Rkd×kd .
We approximate the statistics µ, Σ, m and S of ln(Hd) and
ln(Hn ) by their sample estimates:

µ̂ =
1
td

td∑

t=1

ln ([Hd ]t)

Σ̂ =
1

td − 1

td∑

t=1

(ln ([Hd ]t)− µ̂) (ln ([Hd ]t)− µ̂)T

m̂ =
1
tn

tn∑

t=1

ln ([Hn ]t)

Ŝ =
1

tn − 1

tn∑

t=1

(ln ([Hn ]t)− m̂) (ln ([Hn ]t)− m̂)T (2)

We add a regularization term Jtemp(Hn ) to the CMF-WISA cost
function that approximates the Kullback-Leibler (KL) diver-
gence between ln(Hd) and ln(Hn ) using the sample estimates
defined in (2):

Jtemp (Hn ) = DKL (ln(Hd)‖ ln (Hn ))

≈ 1
2

(

tr
(
Ŝ−1Σ̂

)
+ (m̂− µ̂)T Ŝ−1 (m̂− µ̂)

− kd + ln

(
det

(
Ŝ

)

det
(
Σ̂

)

))

(3)

This term will regularize Hn such that its second-order statistics
match those of Hd . In practice, µ̂ and Σ̂ are computed before-
hand from the noise-only time-activation matrix Hd and are then
fixed throughout the algorithm. In this article, we assume that
the covariance matrices Σ̂ and Ŝ are diagonal; i.e., each row of
Hd and Hn is generated independently.
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C. Spectral Regularization

The bore of the MRI scanner acts as a resonance cavity that
imparts a transfer function on the MRI noise prior to being
recorded. When we learn a noise model from the noise-only
signal, we implicity capture the Fourier coefficients of the trans-
fer function in the noise dictionary Wd . When a subject speaks
inside the scanner, they open and close their mouth and vary the
position of their articulators, which changes the volume of the
resonance cavity. This results in slight but noticable changes in
the transfer function. Consequently, there can be a slight mis-
match between the noise dictionary Wd and the noise component
during speech production. The mismatch is most noticeable at
frequencies where the noise has high energy.

To address the mismatch, we allow entries in Wd correspond-
ing to frequencies with high noise energy to change when up-
dating the noise dictionary Wn on the noisy speech. We achieve
this by introducing a regularization term Jspec(Wn ) to the CMF-
WISA cost function:

Jspec (Wn ) = ‖Λ (Wd −Wn ) ‖2F . (4)

Λ ∈ Rm×m
+ is a diagonal matrix that specifies how closely the

entries in Wn must match the entries in Wd for the frequency
bins 1, . . . ,m. High values in Λ enforce less change while lower
values allow for greater change, so we set entries in Λ corre-
sponding to frequencies with low noise energy to a high value λ0
and entries corresponding to frequencies with high noise energy
to values lower than λ0 .

D. Update Equations

We now present the update equations with the regularization
terms incorporated and pseudo-code for the denoising algo-
rithm. When learning the noise-only model, we minimize the
following cost function:

Cnoise (Wd,Hd) = ‖Vd −WdHd‖2F + αd

td∑

j=1

‖ [Hd ]j ‖1 , (5)

where αd trades reconstruction error for sparsity in Hd . The
update equations for the noise model on the noise-only signal
are as follows:

Wd ←Wd � VdH
T
d

WdHdHT
d

(6)

Hd ← Hd � WT
d Vd

WT
d WdHd + αd

(7)

These update equations are derived in [21].
When learning the speech model and updating the noise

model on the noisy speech, we minimize the following cost
function:

Cnoisy (Ws,Wn,Hs,Hn , Ps, Pn )

= ‖V − (WsHs ⊗ Ps + WnHn ⊗ Pn ) ‖2F

+ αs

tn∑

j=1

‖ [Hs ]j ‖1 + γJtemp (Hn ) + Jspec (Wn ) , (8)

where αs trades reconstruction error for sparsity in Hs , γ con-
trols the amount of temporal regularization, and Λ controls the
amount of spectral regularization. We will discuss parameter
settings of γ and Λ in Section VII. Minimizing (8) directly
is difficult, so we minimize an auxiliary cost function, shown
in (32) in Appendix A. The auxiliary function has auxiliary
variables V̄s and V̄n that are calculated as

V̄s = V̂s + Bs �
(
V − V̂

)
(9)

V̄n = V̂n + Bn �
(
V − V̂

)
, (10)

where

Bs =
WsHs

WH
(11)

Bn =
WnHn

WH
(12)

The update equations for the speech model on the noisy speech
are

Ps = exp
(
j arg

(
V̄s

))
, (13)

Ws ←Ws �
|V̄s |
Bs

HT
s

Ws Hs

Bs
HT

s

, (14)

Hs ← Hs �
WT

s
|V̄s |
Bs

WT
s

Ws Hs

Bs
+ αs1ks×tn

. (15)

The derivation of these update equations can be found in [24].
Finally, the update equations for the noise model on the noisy
speech are

Pn = exp
(
j arg

(
V̄n

))
, (16)

Wn ←Wn �
|V̄n |
Bn

HT
n + (∇Wn

Jspec (Wn ))num
Wn Hn

Bn
HT

n + (∇Wn
Jspec (Wn ))den

, (17)

Hn ← Hn �
WT

n
|V̄n |
Bn

+ γ (∇Hn
Jtemp (Hn ))num

WT
n

Wn Hn

Bn
+ γ (∇Hn

Jtemp (Hn ))den

, (18)

where

(∇Wn
Jspec (Wn ))num = ΛT ΛWd, (19)

(∇Wn
Jspec (Wn ))den = ΛT ΛWn, (20)

(∇Hn
Jtemp (Hn ))num

=
1

Hn
�

[
1
tn

Ŝ−1
([

Û
]+

+
[
M̂

]−)

1kd×tn

+
1

tn − 1

(

Ŝ−2Σ̂ +
(
M̂ − Û

)T

Ŝ−2
(
M̂ − Û

))

×
(

[ln(Hn )]+ +
[
M̂

]−
1kd×tn

)

+
1

tn − 1
Ŝ−1

(

[ln(Hn )]− +
[
M̂

]+
1kd×tn

)]

, (21)
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and

(∇Hn
Jtemp (Hn ))den

=
1

Hn
�

[
1
tn

Ŝ−1
([

Û
]−

+
[
M̂

]+
)

1kd×tn

+
1

tn − 1

(

Ŝ−2Σ̂ +
(
M̂ − Û

)T

Ŝ−2
(
M̂ − Û

))

×
(

[ln(Hn )]− +
[
M̂

]+
1kd×tn

)

+
1

tn − 1
Ŝ−1

(

[ln(Hn )]+ +
[
M̂

]−
1kd×tn

)]

. (22)

In the above equations, Û = diag(µ̂) and M̂ = diag(m̂). We
show the derivation of these update equations in Appendix A.
Algorithm 1 shows the pseudo-code for the denoising algorithm.

Algorithm 1: Denoising Algorithm.
1: Initialize parameters num_iter, ks , kd , αs , αd , γ, Λ
2: Create spectrograms Vd from noise-only signal and V

from noisy speech x
{Learn noise model from noise-only signal}

3: Initialize Wd and Hd with random matrices
4: Initialize Pd = exp (j arg (Vd))
5: for iter = 1 to num_iter do
6: Update Wd using (6)
7: Update Hd using (7)
8: end for
9: Calculate second-order statistics µ̂ and Σ̂ from Hd

{Learn speech model and update noise model from
noisy speech}

10: Initialize Ws , Hs , and Hn with random matrices

11: Initialize W = [Ws Wd ] and H =
[

Hs

Hn

]

12: Initialize Ps, Pn = exp (j arg (V ))
13: Initialize V̂ = WsHs ⊗ Ps + WnHn ⊗ Pn

14: Calculate second-order statistics m̂ and Ŝ from Hn

15: for iter = 1 to num_iter do
16: Update Bs,Bn with (11), (12)
17: Update V̄s , V̄n with (9), (10)
18: Update Ps, Pn with (13), (16)
19: Update Ws,Wn with (14), (17)
20: Update Hs,Hn with (15), (18)
21: Update second-order statistics m̂ and Ŝ from Hn

22: end for
23: Estimate noise d̂ from inverse STFT of WnHn ⊗ Pn

24: return Estimated speech ŝ = x− d̂

VI. EXPERIMENTAL EVALUATION

The following sections describe the datasets we tested our
algorithm on, the other denoising algorithms we compared
against, and the evaluation metrics we used.

A. Datasets

MRI-utt dataset: The MRI-utt dataset contains 6 utterances
spoken by a male in an MRI scanner. The utterances include 2
TIMIT sentences [25] and various standard vowel-consonant-
vowel utterances that can be used to verify how well the de-
noising preserves the spectral components of these vowels and
consonants. We recorded these utterances with seq1, seq2, seq3,
ga21, ga55, and mult pulse sequences (we refer to these se-
quences as the real-time sequences). In the case of the static 3D
pulse sequence (st3d), the utterances consist of a vowel held for
7 seconds because this sequence can only be used to capture
static vocal tract postures. We obtained a noise-only signal of
the real-time sequences from the start of the noisy speech before
the subject speaks, while the st3d noise-only signal came from
a recording of the st3d pulse while the subject remained silent.
The drawback with using recordings in the MRI scanner for
denoising evaluation is the lack of a clean reference signal.

Aurora 4 dataset [26]: The Aurora 4 dataset is a subset of
clean speech from the Wall Street Journal corpus [27]. We added
the 7 pulse sequence noises to the clean speech with an SNR of
−7 dB, which is similar to the SNR in the MRI-utt dataset. We
note that even though the static 3D noise would occur with a held
vowel rather than continuous speech in a real-world scenario,
we still added this noise to the clean speech to evaluate how well
our algorithm removes this noise. Aurora 4 is divided into train,
dev, and test sets. We used the dev set to determine optimum
parameter settings for our algorithm (see Section VII) and report
denoising results on the test set.

B. Other Denoising Algorithms

We compared the performance of our proposed algorithm to
the two-step algorithm (denoted 2step) we previously proposed
in [14], the correlation subtraction + spectral noise gating algo-
rithm (denoted CS+SNG) [12], and the LMS variant (denoted
LMS-model) proposed in [11].

2step [14]: The 2step algorithm sequentially processes the
noisy speech through an NMF step then a wavelet packet analy-
sis stage. The NMF step estimates the speech and noise compo-
nents in the noisy speech and passes the estimated speech to a
wavelet packet analysis step for further noise removal. Wavelet
packet analysis thresholds the estimated speech wavelet co-
efficients in different frequency bands based on the wavelet
coefficients of the reference noise signal [28]; speech wavelet
coefficients below the threshold are set to zero. The resulting
thresholded coefficients are converted back to the time domain
with the inverse wavelet packet transform to give the final de-
noised speech.

CS+SNG [12]: The CS+SNG algorithm is also a two-stage
algorithm. The first stage, correlation subtraction, determines
the best temporal alignment between the noisy speech and noise
reference using the correlation metric. The time-aligned noise
reference is subtracted from the noisy speech to get the esti-
mated speech. The estimate speech is then passed to a spectral
noise gating algorithm which thresholds the estimated speech
Fourier coefficients in each frequency band based on the noise
reference Fourier coefficients, similar to wavelet packet analy-
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sis. The thresholded coefficients are converted back to the time
domain, resulting in the final denoised speech.

LMS-model [11]: LMS-model creates an artificial noise refer-
ence signal based on the periodicity of the MRI pulse sequence
(see f0 in Table I). Using the noisy speech and reference noise
signals, LMS-model recursively updates the weights of an adap-
tive filter to minimize the mean square error between the filter
output and the noise signal. The residual error between the filter
output and the noise signal is the final denoised speech.

LMS-model is known to perform well with seq1, seq2, and
seq3 noises and is currently used to remove these pulse sequence
noises from speech recordings. However, its performance de-
grades with golden angle and static 3D pulse sequence noises,
preventing speech researchers from collecting better MR images
using golden angle pulse sequences or capturing 3D visualiza-
tions of the vocal tract during speech production. On the other
hand, the other denoising methods are agnostic to the pulse se-
quence and can be used for removing a wider range of pulse
sequence noises, including the golden angle sequences.

C. Quantitative Performance Metrics

We used the following 5 objective measures for evaluating
the denoising performance.

1) Noise suppression (NS): To quantify the amount of noise
the denoising algorithms remove, we calculated the noise
suppression, which is given by

NS = 10 log
(

Pnoise

P̂noise

)

, (23)

where Pnoise is the power of the noise in the noisy signal
and P̂noise is the power of the noise in the denoised sig-
nal. We used a voice activity detector (VAD) to find the
noise-only regions in the denoised and noisy signals. We
calculated the noise suppression measure instead of SNR
because we do not have a clean reference signal for the
MRI-utt dataset.

2) Log-likelihood ratio (LLR): Ramachandran et al. pro-
posed the log-likelihood ratio (LLR) and distortion vari-
ance (DV) measures in [29] for evaluating the amount
of distortion introduced by the denoising algorithm. The
LLR calculates the mismatch between the spectral en-
velopes of the clean signal and the denoised signal. It is
calculated using

LLR = log
aT

ŝ Rsaŝ

aT
s Rsas

, (24)

where as and aŝ are p-order LPC coefficients of the clean
and denoised signals respectively, and Rs is a (p + 1)×
(p + 1) autocorrelation matrix of the clean signal. An LLR
of 0 indicates no spectral distortion between the clean and
denoised signals, while a high LLR indicates the presence
of noise and/or distortion in the denoised signal.

3) Distortion variance (DV): The distortion variance is given
by

DV =
1
N

N−1∑

n=0

|s[n]− ŝ[n]|2 , (25)

where s[n] and ŝ[n] are the clean and denoised signals
respectively, and N is the length of the signal. A low
distortion variance is more desirable than a high distortion
variance.

4) Perceptual Evaluation of Speech Quality (PESQ) score:
The PESQ score is an automated assessment of speech
quality [30]. It gives a score for the denoised signal from
−0.5 to 4.5, where −0.5 indicates poor speech quality
and 4.5 indicates excellent quality. The score models the
mean opinion score (but with a different scale), so the
PESQ score provides a way to estimate the speech quality
quantitatively without requiring listening tests. We calcu-
lated the PESQ score using C code provided by ITU-T.

5) Short-Time Object Intelligibility (STOI) score: Similar
to the PESQ score, the STOI score is an automated as-
sessment of the speech intelligibility [31]. Unlike several
other objective intelligibility measures, STOI is designed
to evaluate denoised speech. The STOI score ranges from
0 to 1, with higher values indicating better intelligibil-
ity. We calculated the STOI score using the Matlab code
provided by the authors in [31].

D. Qualitative Performance Metrics

To supplement the quantitative results, we created a listening
test on Amazon Mechanical Turk to compare the denoised sig-
nals from our proposed algorithm, 2step, CS+SNG, and LMS-
model. We selected 4 Aurora sentences and added the 7 pulse
sequence noises to these with−7 dB SNR. For each clean/noisy
pair, we denoised the noisy signal with the denoising algorithms
and presented the listeners with the clean, denoised, and noisy
signals. We refer to these 6 clips (clean, denoised with proposed,
2step, CS+SNG, LMS-model, and noisy) as a set. We asked the
listeners to rate the speech quality of each of the clips on a scale
of 1 to 5, with 1 meaning poor quality and 5 meaning excellent
quality. Additionally, we asked them to rank the clips within
each set from 1 to 6, with 1 being the least natural/worst quality
clip to 6 being the most natural/best quality. We also included
2 clips of TIMIT sentences from the MRI-utt dataset with the
rtMRI pulse sequences and 2 clips of held vowels with the st3d
static 3D sequence. For these clips, we only provided the noisy
and denoised clips in the set because we don’t have a clean
recording of the speech. The listeners had to rate these clips
from 1 to 5 as before, but only provide rankings from 2 to 6
because there are only 5 clips in these sets. 40 Mechanical Turk
workers evaluated each set and assigned a rating and ranking to
each clip as described.

During the experiment, we rejected any sets where the rating
or ranking was left blank and allowed someone else to pro-
vide ratings and rankings for those sets. After the experiment
concluded, we processed the results to remove bad data. If an
annotator rated a noisy clip from a set as a 4 or 5, or ranked it as a
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TABLE III
NUMBER OF DATA POINTS FOR THE LISTENING TEST FOR EACH DATA

SET AND PULSE SQUENCE NOISE

Dataset seq1 seq2 seq3 ga21 ga55 mult st3d

MRI-utt 73 70 73 75 69 70 60
Aurora 4 144 139 141 136 140 134 137

5 or 6, then we discarded the results for that set. Table III shows
the total number of data points for each dataset and pulse se-
quence noise after processing the results. The values in Table III
reflect the fact that we used 2 clips from MRI-utt and 4 clips
from Aurora per noise in the listening test. Thus, on average,
we retained 35 unique ratings and rankings for the clips in each
dataset and sequence noise after processing the results.

VII. ANALYSIS OF REGULARIZATION PARAMETERS

The proposed algorithm contains two parameters that control
the spectral and temporal regularization during the multiplica-
tive updates. Generally, analysis of the noise can inform proper
selection of these parameters. In this section, we will analyze
these parameters and provide insight into choosing good values
for these parameters.

A. Spectral Regularization

The weight of the spectral regularization term in the cost
function (8) is controlled by Λ. In this article, we ex-
plore spectral regularization weightings of the form Λ =
diag([c · · · c λ · · · λ c · · · c]), where c ∈ R+ controls the reg-
ularization of the DFT bins corresponding to low and high fre-
quency bins and λ ∈ R+ controls the regularization of the DFT
bins corresponding to the middle frequencies. Higher values
of c and λ result in less change in Wn relative to Wd at the
corresponding frequencies.

In our datasets, most of the MRI noise energy is concentrated
between 600 Hz and 6 kHz for the rtMRI sequences and 700 Hz
to 8 kHz for the st3d sequence. Thus, we let λ regularize the
frequency bins for 600 Hz to 6 kHz for the real-time sequences
and 700 Hz to 8 kHz for the st3d sequence, while c controls the
remaining frequency bins. We set c = 108 and varied λ from the
set λ ∈ {0, 101 , 102 , 103 , 104 , 105}.

B. Temporal Regularization

The influence of the temporal regularization term on the cost
function (5) is controlled by γ. Higher values of γ enforce
greater adherence to the statistics calculated from Hd . Tempo-
ral regularization also implicitly affects how the noise basis Wn

is updated; by incorporating prior knowledge about the time-
activations, Wn is forced to model parts of the noisy speech
(i.e., noise) that results in time-activation statistics matching
the learned statistics. To explore the effect of temporal regu-
larization on the denoising performance, we varied γ from the
set γ ∈ {0, 101 , 102 , 103} and measured the noise suppression,

Fig. 1. Quantitative metrics for different spectral regularization weights λ and
temporal regularization weights γ .

LLR, PESQ scores, and STOI scores for the Aurora 4 dev set
with ga55 noise added.

C. Discussion

Fig. 1 shows the noise suppression, LLR, PESQ scores, and
STOI scores for the Aurora 4 dev set with ga55 noise added
at −7 dB SNR when varying λ and γ. From the figure, we
see a trade-off between noise suppression and signal distortion
as we vary λ. Noise suppression, LLR, and distortion variance
decrease as λ increases. This makes sense because higher λ

results in less changes to the noise dictionary, which causes less
noise to be removed but also reduces the chance of removing
speech. The PESQ score indicates that the denoised speech
quality increases slightly when increasing λ from 101 to 103 , but
decreases beyond 103 . Similar to the spectral regularization, we
see a trade-off between noise suppression and signal distortion
as we vary γ, though the effect is not as pronounced as when
we varied λ. Higher values of γ lead to less noise suppression,
greater distortion, and lower speech quality. In the interest of
space, we only show results with ga55 noise, but the trends are
similar for the other pulse sequence noises.

When we do not use any regularization in the cost function
(8) (i.e. λ = 0 and γ = 0), we see that the performance is gen-
erally worse than when regularization is used. Without these
regularization terms, the cost function only contains the recon-
struction error and the �1 penalty on the speech time-activation
matrix. In this case, the algorithm will learn a noise model that
maximally minimizes the reconstruction error, which leads to
maximal noise removal. This result is reflected in the noise
suppression values in Fig. 1. However, the unregularized cost
function does not take into account the temporal structure of
the noise and the filtering effects of the MRI scanner bore and
vocal tract shaping, as discussed in Sections V-B and V-C. This
means that the algorithm does not properly account for the pres-
ence of speech when learning the noise model, and subtracting
the estimated noise component from the noisy speech leads to
distortion in the speech. This results in a higher LLR and lower
PESQ and STOI scores, as shown in Fig. 1.

VIII. RESULTS AND DISCUSSION

Based on our discussion in Section VII, we optimized the
parameters of our proposed algorithm for each pulse sequence
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TABLE IV
PARAMETER SETTINGS FOR THE NUMBER OF SPEECH DICTIONARY ELEMENTS

(ns ) AND WAVELET PACKET DEPTH (D) IN THE 2STEP ALGORITHM

Parameter seq1–3 ga21 ga55 mult st3d

ns 30 30 30 30 10
D 7 8 9 7 9

The number of noise dictionary elements was set to 70 and
the window length for wavelet packet analysis was set to 2048
for all noises. See [14] for more information about the 2step
parameters.

Fig. 2. Noisy and denoised spectrograms of the sentence “Don’t ask me to
carry an oily rag like that” in the MRI-utt dataset. The noise is seq3.

Fig. 3. Clean, noisy, and denoised spectrograms of the sentence “The language
is a big problem” in the Aurora 4 dataset. The noise is seq3.

noise. We chose λ = 103 and γ = 100. Additionally, we set the
number of speech dictionary elements ks = 30 and number of
noise dictionary elements kd = 50 for the real-time sequences in
the MRI-utt dataset and for all sequences in the Aurora 4 dataset.
For the st3d sequence in the MRI-utt dataset, we used ks =
5 and kd = 100 because a held vowel requires fewer speech
dictionary elements than running speech, which has a wider
range of sounds. We ran the update equations for 300 iterations.
The parameters used for the 2step algorithm [14] are shown in
Table IV. These parameters were determined in the same manner
we used to select the parameters for the proposed algorithm. For
the CS+SNG method [12], we optimized the noise reduction
coefficient parameter for the 5 objective metrics. We found the
best value to be 0.3. The LMS-model algorithm [11] does not
require parameter tuning; its parameter is based on f0 , which is
noise-dependent (see Table I).

Figs. 2 and 3 show spectrograms of removing seq3 noise
from an audio clip in the MRI-utt and Aurora 4 datasets us-

Fig. 4. Average values of the noisy cost function (8) as a function of iteration
number and average run times for the denoising algorithms as a function of
audio duration for the Aurora 4 dev set.

TABLE V
NS RESULTS (DB) FOR THE MRI-UTT DATASET

Sequence Proposed 2step CS+SNG LMS-model

seq1 30.18 25.52 33.51 13.90
seq2 29.42 14.71 31.87∗ 15.04
seq3 29.55 13.65 31.79∗ 16.70
ga21 29.26 15.47 31.57∗ 13.81
ga55 30.34 14.74 33.19∗ 10.30
mult 29.22 12.69 32.87∗ 0.47
st3d 10.82 7.99 10.12 −1.69

ing the different denoising algorithms. Fig. 4 shows the average
value of the cost function (8) at each iteration when denoising
files in the Aurora 4 dev set. The cost function monotonically
decreases and reaches convergence after roughly 300 iterations
for both datasets. Additionally, the figure shows the average run
time for the denoising algorithms when processing files of dif-
ferent durations in the Aurora 4 dev set. We either chopped or
zero-padded the files to achieve the desired duration. Unfortu-
nately, we see that the proposed algorithm has the longest run
time among the denoising algorithms. Finding ways to improve
computation efficiency will be one of our priorities in improving
the algorithm.

A. Objective Results

Table V lists the average noise suppression across each ut-
terance in the MRI-utt dataset. We used the nonparametric
Wilcoxon Rank-Sum Test to determine if the medians of the
noise suppression (and the other metrics) are significantly dif-
ferent between the different denoising methods. In Table V and
subsequent tables, a bolded value indicates the best-performing
algorithm and an asterisk denotes statistically significant per-
formance with p < 0.05. Table VI shows the noise suppression,
LLR, distortion variance, PESQ, and STOI results for the Aurora
4 test set.

We see that our proposed algorithm consistently has the least
signal distortion compared to the other denoising methods, ex-
cept for the LLR measurement in seq1, seq2, and seq3 noises,
where the LMS-model performs the best. Unfortunately, this
comes at a cost of less noise removal, as indicated by the bet-
ter noise suppression performance of CS+SNG for all of the
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TABLE VI
NS, LLR, DV, PESQ SCORES, AND STOI SCORES FOR THE AURORA 4 DATASET

Metric Sequence Proposed 2step CS+SNG LMS-model

NS (dB) seq1 15.42 11.17 18.08∗ 9.52
seq2 15.78 11.38 17.49∗ 9.62
seq3 15.61 11.38 18.24∗ 10.33
ga21 15.39 11.29 16.57∗ 8.71
ga55 14.96 10.95 16.36∗ 7.16
mult 14.93 10.51 16.61∗ 0.21
st3d 14.78 11.98 17.12∗ −1.80

LLR seq1 1.004 3.676 2.462 0.987∗
seq2 1.058 3.666 2.046 0.931∗
seq3 1.012 3.650 2.065 0.850∗
ga21 1.018∗ 3.329 1.987 1.058
ga55 1.020∗ 3.179 1.882 1.497
mult 1.098∗ 3.486 2.480 2.839
st3d 0.676∗ 2.522 2.265 2.094

DV (×10−5 ) seq1 1.933∗ 2.502 2.512 3.105
seq2 1.919∗ 2.484 2.401 3.094
seq3 1.846∗ 2.342 2.428 3.013
ga21 1.635∗ 2.149 1.909 2.941
ga55 1.497∗ 1.908 1.769 3.043
mult 1.552∗ 1.897 1.941 4.187
st3d 0.971∗ 2.919 1.683 4.217

PESQ seq1 2.20 2.49∗ 1.95 1.91
seq2 2.23 2.60∗ 2.09 1.97
seq3 2.30 2.67∗ 2.06 2.03
ga21 2.36 2.65∗ 2.07 1.94
ga55 2.43 2.71∗ 2.14 1.97
mult 2.30 2.70∗ 2.08 1.56
st3d 3.01∗ 2.12 2.02 1.97

STOI seq1 0.907∗ 0.781 0.785 0.869
seq2 0.910∗ 0.778 0.800 0.873
seq3 0.920∗ 0.795 0.788 0.883
ga21 0.920∗ 0.782 0.828 0.861
ga55 0.922∗ 0.798 0.836 0.825
mult 0.907∗ 0.792 0.790 0.714
st3d 0.964∗ 0.705 0.812 0.765

pulse sequence noises in the Aurora 4 datasets. However, as we
discussed in Section VII, minor changes in parameter settings
can vary the trade-off between noise suppression and distortion,
depending on the user’s needs. We also see that our algorithm
always gave the best STOI scores and the best PESQ score in
st3d noise. The low distortion coupled with good speech intelli-
gibility indicates that our proposed algorithm produces denoised
speech that can be used reliably for speech analysis and sub-
jective listening tests. We observe that the proposed algorithm
improves upon our previous approach (2step algorithm) in all
measures except the PESQ score in real-time pulse sequences.
This observation suggests that incorporating phase information
results in better separation of speech and noise, particularly at
frequencies where there is overlap between speech and noise.

For the st3d noise, we see that our algorithm far outperforms
the other denoising methods in terms of signal distortion, speech
quality, and intelligibility. This encouraging result suggests our
denoising approach is better suited for removing aperiodic noise,
such as st3d pulse sequence noises, than other denoising ap-
proaches. One reason why our algorithm shows better results
for st3d compared to the real-time sequences is that our algo-
rithm had access to the st3d noise-only signal while it extracted

TABLE VII
MEAN RANKINGS OF THE AUDIO CLIPS FOR EACH DATASET CORRUPTED WITH

DIFFERENT PULSE SEQUENCE NOISES

Dataset Sequence Clean Proposed 2step CS+SNG LMS-model Noisy

MRI-utt seq1 — 3.85 3.63 4.47∗ 3.47 1.63
seq2 — 4.13 3.57 4.10 3.44 1.70
seq3 — 3.56 3.47 3.81 3.71 1.66
ga21 — 3.81 3.25 4.21 3.48 1.64
ga55 — 3.54 3.65 3.94 2.70 1.65
mult — 3.44 3.39 4.10∗ 1.94 1.99
st3d — 2.78 3.17 2.72 2.35 1.92

Aurora 4 seq1 5.74 4.10∗ 3.74 2.99 3.07 1.29
seq2 5.66 4.17∗ 3.58 3.09 3.30 1.29
seq3 5.60 4.06∗ 3.64 3.48 3.28 1.33
ga21 5.71 4.46∗ 3.94 2.95 2.87 1.28
ga55 5.63 4.34∗ 3.82 3.20 2.33 1.30
mult 5.69 4.18 4.28 3.22 1.59 1.66
st3d 5.72 4.26∗ 3.62 3.57 1.39 1.93

the real-time sequence noises from the start of the noisy speech.
Meanwhile, CS+SNG had access to the noise-only signal for all
sequences. We performed the experiment in this way because
we wanted to mimic how these algorithms function in the wild;
CS+SNG requires a reference noise signal while our algorithm
can handle having partial information about the noise signal.

It is interesting to note that the 2step algorithm gives a better
PESQ score for the real-time sequence noises while the proposed
algorithm gives a better STOI score. These results suggest that
the 2step approach preserves properties of the speech that lead
to better perceptual quality while the proposed method retains
speech properties important for conveying speech content. This
finding warrants further investigation into the specific speech
properties required for good speech and quality and intelligibil-
ity, and understanding how the proposed and 2step algorithms
preserve these properties. Incorporating these properties in the
optimization framework of the proposed algorithm can further
improve the denoised speech quality.

B. Listening Test Results

Table VII shows the mean rankings obtained from the lis-
tening test for the 3 datasets corrupted by the pulse sequence
noises. A higher value indicates a better ranking. In this table,
we highlight the best rank in bold and statistically significant
results, marked with an asterisk, are computed by comparing the
rankings among the denoising methods only; not surprisingly,
the rankings for the clean speech are always significantly better
than the denoised speech. Table VIII shows the mean ratings of
speech quality obtained from the listening test. As with the rank-
ing results, we highlight the best statistically significant results
when comparing the ratings from the denoising methods.

We see from Tables VII and VIII that listeners compared the
denoised speech from our algorithm favorably with the denoised
speech from CS+SNG. In all cases in the Aurora dataset, lis-
teners ranked and rated our output as the best denoised speech.
More interestingly, we see that our algorithm ranked and rated
the best among the denoising algorithms for removing st3d pulse
sequence noise in the Aurora dataset. Though the ratings are
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TABLE VIII
MEAN RATINGS OF THE AUDIO CLIPS FOR EACH DATASET CORRUPTED WITH

DIFFERENT PULSE SEQUENCE NOISES

Dataset Sequence Clean Proposed 2step CS+SNG LMS-model Noisy

MRI-utt seq1 — 3.07 2.99 3.60∗ 2.78 1.26
seq2 — 3.30 2.77 3.24 2.69 1.29
seq3 — 2.82 2.66 3.07 3.00 1.19
ga21 — 2.93 2.65 3.36∗ 2.80 1.29
ga55 — 2.99 2.94 3.14 2.09 1.32
mult — 2.44 2.40 3.14∗ 1.20 1.36
st3d — 1.73 2.07 1.78 1.53 1.27

Aurora seq1 4.78 3.58 3.39 2.75 2.85 1.33
seq2 4.78 3.68∗ 3.17 2.75 2.98 1.35
seq3 4.73 3.59∗ 3.28 3.17 2.99 1.45
ga21 4.82 3.83∗ 3.44 2.75 2.70 1.36
ga55 4.75 3.74∗ 3.44 2.93 2.16 1.34
mult 4.79 3.66 3.66 2.90 1.50 1.57
st3d 4.77 3.63 3.24 3.14 1.44 1.61

poor for the MRI-utt dataset, they are a promising indicator that
our algorithm is a step in the right direction for handling aperi-
odic, high-power noise corrupting a speech recording. Another
observation is that the rankings and ratings for the LMS-model
algorithm decreases when going from Sequence 1–3 noise to
Golden Angle noise and finally to multislice and static 3D noise.
In contrast, the proposed algorithm performs consistently well in
the different noises, giving speech researchers greater flexibility
in choosing an MRI sequence to study the vocal tract.

IX. CONCLUSION

We have proposed a denoising algorithm to remove noise
from speech recorded in an MRI scanner. The algorithm uses
CMF-WISA to model spectro-temporal properties of the speech
and noise in the noisy signal. Using CMF-WISA instead of
NMF allowed us to model the magnitude and phase of the
speech and noise. We incorporated spectral and temporal reg-
ularization terms in the CMF-WISA cost function to improve
the modeling of the noise. Parameter analysis of the weights
of the regularization terms gave us optimum ranges for the
weights to balance the trade-off between noise suppression and
speech distortion and also showed that having the regularization
terms improved denoising performance over not having the reg-
ularization terms. Objective measures show that our proposed
algorithm achieves lower distortion and higher STOI scores
than other recently proposed denoising methods. A listening
test shows that our algorithm yields higher quality and more
intelligible speech than some other denoising methods in some
pulse sequence noises, especially the aperiodic static 3D pulse
sequence. We have provided a MATLAB implementation of our
work at github.com/colinvaz/mri-speech-denoising.

To further extend our work, we will improve the contribution
of the temporal regularization term by modeling the distribu-
tion of the noise time-activation matrix in a data-driven manner
rather than assuming a log-normal distribution. Additionally, we
will incorporate STFT consistency constraints [32] and phase
constraints [33] when learning the speech and noise components
to reduce artifacts and distortions in the estimated components.

In our current work, we made strides towards addressing con-
volutive noise in the MRI recordings by using spectral regular-
ization to account for filtering effects of the scanner bore, but a
more rigorous treatment of convolutive noise might further im-
prove results. Given that the primary motivation behind record-
ing speech in an MRI is for linguistic studies, we will evaluate
how well our algorithm aids speech analysis, such as improving
the reliability of formant and pitch measurements. However, we
will also target clinical use of this algorithm by developing a
real-time version that facilitates doctor-patient interaction dur-
ing MRI scanning. Finally, we will evaluate the performance of
our algorithm in other low-SNR speech enhancement scenarios,
such as those involving babble and traffic noises to generalize
its application beyond MRI acoustic denoising.

APPENDIX A
DERIVATION OF UPDATE EQUATIONS

When learning the speech basis and updating the noise basis
from the noisy speech, we used the following cost function:

C (θ) = Jerror
(
V̂

)
+ αsJspars (Hs) + γJtemp (Hn ) +Jspec (Ws)

(26)
where

Jerror

(
V̂

)
= ‖V − V̂ ‖2F , (27)

Jspars (Hs) =
tn∑

j=1

‖ [Hs ]j ‖1 , (28)

Jtemp (Hn ) = DKL (ln (Hd) ‖ ln (Hn )) , (29)

and

Jspec (Wn ) = ‖Λ (Wd −Wn ) ‖2F . (30)

θ = (Ws,Wn,Hs,Hn , Ps, Pn ) is the set of parameters we seek
when optimizing the cost function, and V̂ = WsHs � Ps +
WnHn � Pn .

In this work, we assume that ln (Hd) ∼ N (µ,Σ) and
ln (Hn ) ∼ N (m, S), with diagonal covariance matrices Σ and
S. In this case,

Jtemp (Hn ) ≈ 1
2

(

tr
(
Ŝ−1Σ̂

)
+ (m̂− µ̂)T Ŝ−1 (m̂− µ̂)

− kd + ln

(
det

(
Ŝ

)

det
(
Σ̂

)

))

. (31)

We estimate µ with the sample mean µ̂ = 1
td

∑td

t=1

ln ([Hd ]t) and Σ with the sample covariance Σ̂ = 1
td−1

∑td

t=1

(ln ([Hd ]t)− µ̂) (ln [(Hd ]t)− µ̂)T and keeping only the diag-
onal elements in Σ̂. Similarly, we estimate m with the sample
mean m̂ = 1

tn

∑tn

t=1 ln ([Hn ]t) and S with the sample covari-

ance Ŝ = 1
tn −1

∑tn

t=1 (ln ([Hn ]t)− m̂) (ln [(Hn ]t)− m̂)T

and keeping only the diagonal elements in Ŝ.
When minimizing the primary cost function is difficult, an

auxiliary function is introduced.
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Definition 1: C+
(
θ, θ̄

)
is an auxiliary function for C (θ) if

C+
(
θ, θ̄

) ≥ C (θ) and C+ (θ, θ) = C (θ).
It has been shown in [23] that C (θ) monotonically de-

creases under the updates θ̄ ← argminθ̄ C+
(
θ, θ̄

)
and θ ←

argminθ C+
(
θ, θ̄

)
.

We form the auxiliary function as

C+ (
θ, θ̄

)
= J+

error

(
V̂ , V̄

)
+ αsJ

+
spars

(
Hs, H̄s

)

+ γJ+
temp

(
Hn, H̄n

)
+ Jspec (Ws) , (32)

where

J+
error

(
V̂ , V̄

)
=

m∑

f =1

n∑

t=1

∣
∣
∣
∣
[
V̄s

]
f t
−

[
V̂s

]

f t

∣
∣
∣
∣

2

[βs ]f t

+
m∑

f =1

n∑

t=1

∣
∣
∣
∣
[
V̄n

]
f t
−

[
V̂n

]

f t

∣
∣
∣
∣

2

[βn ]f t

, (33)

J+
spars

(
Hs, H̄s

)
=

ks∑

k=1

n∑

t=1

(
ρ

∣
∣
[
H̄s

]
kt

∣
∣ρ−2 [Hs ]

2
kt + 2

∣
∣
[
H̄s

]
kt

∣
∣ρ

− ρ
∣
∣
[
H̄s

]
kt

∣
∣ρ

)
, (34)

and

J+
temp

(
Hn, H̄n

)
=

1
2

(

tr
(
Ŝ−1Σ̂

)
+ (m̂−µ̂)T S−1(m̂− µ̂)

− kd + tr
(

ˆ̄S−1 Ŝ
)
+ ln

(
det

( ˆ̄S
)

det
(
Σ̂

)

)

− kd

)

,

(35)

where ˆ̄m = 1
tn

∑tn

t=1 ln
([

H̄n

]
t

)
and ˆ̄S = 1

tn −1

∑tn

t=1(ln

([H̄n ]t)− ˆ̄m)
(
ln

[(
H̄n

]
t

)− ˆ̄m
)T

. θ̄ =
(
V̄ , H̄s , H̄n

)
are the

auxiliary variables. 0 < ρ < 2 is a parameter for
∑kd

k=1∑tn

t=1 |[Hs ]kt |ρ to promote sparsity in Hs . In our work, we
measure the �1 norm of Hn , so ρ = 1. Proofs that J+

error and
J+

spars are auxiliary functions for Jerror and Jspars respectively can
be found in Appendix A of [24], so we will focus on proving
that J+

temp is an auxiliary function of Jtemp.
Since we assume that each row of Hd and Hn are independent,

we will consider each row separately. In this case, (31) simplifies
to

Jtemp (hn ) =
1
2

(
σ̂2 + (m̂− μ̂)2

ŝ2 − 1 + ln
(

ŝ2

σ̂2

))

(36)

and (35) simplifies to

J+
temp

(
hn , h̄n

)
=

1
2

(
σ̂2 + (m̂− μ̂)2

ŝ2 − 1 +
ŝ2

ˆ̄s2
+ ln

(
ˆ̄s2)

− 1− ln
(
σ̂2)

)

. (37)

Theorem 1: J+
temp

(
hn , h̄n

)
is an auxiliary function for

Jtemp (hn ).
Proof: If h̄n = hn , then ˆ̄m = m̂ and ˆ̄s2 = ŝ2 .
In this case, J+

temp (hn ,hn ) = Jtemp (hn ).

J+
temp

(
hn , h̄n

)− Jtemp (hn ) =
(

ŝ2

ˆ̄s2
+ ln

(
ˆ̄s2)− 1

)

− ln
(
ŝ2)

= ln
(
ˆ̄s2) +

(
ŝ2

ˆ̄s2
− 1

)

− ln
(
ŝ2)

≥ ln
(
ˆ̄s2) + ln

(
ŝ2

ˆ̄s2

)

− ln
(
ŝ2)

∵ ln (x) ≤ x− 1∀x > 0

= 0 (38)

Hence J+
temp

(
hn , h̄n

) ≥ Jtemp (hn ) and J+
temp (hn ,hn ) =

Jtemp (hn ).
∴ J+

temp

(
hn , h̄n

)
is an auxiliary function for Jtemp (hn ).

The optimum value of the auxiliary variable h̄n can be found
by setting the gradient of J+

temp

(
hn , h̄n

)
w.r.t. h̄n equal to zero:

∇h̄n
J+

temp

(
hn , h̄n

)
=

ln
(
h̄n

)− ˆ̄m1tn

(tn − 1)ˆ̄s2h̄n

− ŝ2
(
ln

(
h̄n

)− ˆ̄m1tn

)

(tn − 1)
(
ˆ̄s2

)2
h̄n

= 0

ln
(
h̄n

)− ˆ̄m1n =
ŝ2

s̄2

(
ln

(
h̄n

)− ˆ̄m1tn

)

(

1− ŝ2

ˆ̄s2

)

ln
(
h̄n

)
=

(

1− ŝ2

ˆ̄s2

)

ˆ̄m1n

ln
(
h̄n

)
= ˆ̄m1tn

(39)

J+
temp

(
hn , h̄n

)
can be rewritten for all rows of Hd and Hn

as (35) and the auxiliary variable H̄n can be updated as H̄n =
diag

(
ˆ̄m

)
1kn ×tn

.
We did not create an auxiliary function for Jspec (Wn ) because

it is already quadratic in Wn , so minimizing Jspec w.r.t. Wn is
not difficult. Indeed, ∇Wn

Jspec (Wn ) = ΛT Λ (Wn −Wd).

A. Basis Update Equations

To find the update for Ws , we need to find ∇Ws
C+(θ, θ̄).

Since the regularization terms we added do not contain Ws ,
they do not affect gradient. Hence, we use the update equation
derived in [24], which results in (14).

To find the update for Wn , we calculate ∇Wn
C+

(θ, θ̄) = ∇Wn
(J+

error(V̂ , V̄ ) + Jspec(Wn )). ∇Wn
J+

error(V̂ , V̄ ) =
Wn Hn −|V̄n |

βn
HT

n is derived in [24] and ∇Wn
Jspec(Wn ) =

ΛT Λ(Wn −Wd). So,

∇Wn
C+ (

θ, θ̄
)

=
WnHn −

∣
∣V̄n

∣
∣

βn
HT

n + ΛT Λ (Wn −Wd) .

(40)
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The update equation for Wn is

Wn ←Wn �
[∇Wn

C+
(
θ, θ̄

)]−
[∇Wn

C+
(
θ, θ̄

)]+ , (41)

which leads to the update equation given in (17).

B. Time-Activation Update Equations

To find the update for Hs , we need to find ∇Hs
C+(θ, θ̄).

As in the case with Ws , the added regularization terms do not
contain Hs so they do not affect the gradient. Hence, we use the
update equation derived in [24], which results in (15).

To find the update for Hn , we calculate ∇Hn
C+(θ, θ̄) =

∇Hn
(J+

error(V̂ , V̄ ) + γJ+
temp(Hn, H̄n )).∇Hn

J+
error(V̂ , V̄ )=WT

n
Wn Hn −|V̄n |

βn
is derived in [24]. Define Û = diag(µ̂) and M̂ =

diag(m̂).

∇Hn
J+

temp

(
Hn, H̄n

)
=

1
Hn
�

[
1
tn

Ŝ−1
(
M̂ − Û

)
1kn ×tn

− 1
tn − 1

(

Ŝ−2Σ̂ +
(
M̂ − Û

)T

Ŝ−2
(
M̂ − Û

))

×
(
ln (Hn )− M̂1kn ×tn

)

+
1

tn − 1
Ŝ−1

(
ln (Hn )− M̂1kn ×tn

)]

(42)

The update equation for Hn is

Hn ← Hn �
[∇Hn

C+
(
θ, θ̄

)]−
[∇Hn

C+
(
θ, θ̄

)]+ . (43)

Note that Û , M̂ , and ln (Hn ) are mixed-sign matrices. A mixed-
sign matrix A can be rewritten in terms of non-negative matrices
as A = [A]+ − [A]−. Rewriting the mixed-sign matrices leads
to the update equation for Hn given by (18).
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