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ABSTRACT
We investigate the effect of observed data modality on human and
machine scoring of informative presentations in the context of
oral English communication training and assessment. Three sets of
raters scored the content of three minute presentations by college
students on the basis of either the video, the audio or the text tran-
script using a custom scoring rubric. We find significant differences
between the scores assigned when raters view a transcript or listen
to audio recordings in comparison to watching a video of the same
presentation, and present an analysis of those differences. Using the
human scores, we train machine learning models to score a given
presentation using text, audio, and video features separately. We
analyze the distribution of machine scores against the modality and
label bias we observe in human scores, discuss its implications for
machine scoring and recommend best practices for future work in
this direction. Our results demonstrate the importance of checking
and correcting for bias across different modalities in evaluations of
multi-modal performances.
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1 INTRODUCTION
Presentations are an inherently multimodal activity. Delivering an
effective presentation requires the appropriate and synergistic use
of delivery (fluency, pronunciation, rhythm, intonation, stress, etc.),
language use and content (grammar, vocabulary, topic development,
argumentation, discourse, etc.) and interactive gestures or kinesics
to maintain engagement and rapport with the intended audience.

Multiple studies have also observed the complementarity of us-
ing features of various modalities in automated scoring of oral
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communication tasks [6, 10, 11, 14, 15, 17, 20]. Widely-used auto-
mated scoring algorithms are trained to consume these features
and predict scores assigned by human expert raters.

However, the scores used in all these studies to train the algo-
rithms are the result of human reviewers observing video data in
its entirety in order to judge various aspects of oral communication
proficiency, including those that can be judged purely based on the
content of the presentation, rather than the kinesics or delivery
thereof. None of these studies examined how raters were influenced
by the modality of the data presented to them, and how the modal-
ity a human rater observes can affect the distribution of predicted
scores.

A comprehensive understanding of the interplay between modal-
ity and proficiency judgement remains an important gap in our
understanding of human and automated scoring of oral communi-
cation performance with practical implications – deciding whom
to admit to a university, whom to hire in job interviews [4, 10], or
whom to vote for as the best performer in a debate [3] – to name a
few. Indeed, even as schools increasingly use online tools which as-
sess and teach learners through audio, text, and video interactions,
understanding the relationship between modality and assessment
is of urgent import.

This study bridges this gap by examining how the modality of
data – be it text only, audio only or the entire video – presented
to a rater affects his/her score judgement. It further examines how
modality-specific machine learning features and models perform
comparatively, and discusses the implications for both human and
machine scoring of oral communication tasks that are inherently
multimodal in nature.

2 DATA
2.1 Task
The task required participants to record an informative video for a
group of high school freshmen about what to consider when select-
ing and applying to college. The prompt encouraged participants to
concentrate on providing the necessary information to increase the
high school students’ knowledge and understanding of the topic,
rather than trying to persuade them to go to college. It further
instructed participants to talk about at least two factors – one to
consider early in high school and one later – and to support these
points with personal experiences and/or other examples. The task
therefore involved (i) reviewing the list of things to consider when
selecting and applying to colleges, (ii) preparing their presentation
(5 minutes), and (iii) the actual presentation itself for three minutes.
It is worth noting that while we collect video/audio data of the
participant during the entire task, we only analyze the three minute
presentation.
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2.2 Collection
Our data consists of 80 videos of oral presentations completed
by college students from the United States who were recruited
through Amazon Mechanical Turk. Participants interacted with
HALEF1, an open-source modular cloud-based dialog system that
is compatible with multiple W3C and open industry standards [18],
that delivers the presentation task via a call-in webpage provided
to the participants. The HALEF dialog system logs speech data
collected from participants, which is then transcribed and scored.
Participants had five minutes to prepare their response to the oral
presentation prompt, three minutes to deliver their presentation,
and 4-7 minutes for background questions. We paid US$3.50 for
completion of the 12-15 minute task.

3 HUMAN SCORING
Human raters scored each presentation using a content scoring
rubric on a 0 to 4 scale, where 0 is “off topic," 1 is “deficient," 2
is “weak," 3 is “competent," and 4 is “proficient." For scores of 1
to 4, raters evaluated whether the speaker demonstrated effective
organization, transitions, and time management, and whether they
tailored the presentation to the targeted audience using informa-
tive language. Speakers were also evaluated on whether they sup-
ported the presentation with relevant information as indicated in
the prompt and using personal/outside experiences. The scoring
rubric, which is the same with each modality, was developed based
on a synthesis of existing scoring rubrics in the oral communication
literature and with experienced assessment developers [19]. The
rubric only covered the content dimension of oral communication,
and not the delivery dimension.

All presentations received six scores: two raters with high-levels
of experience scoring spoken responses scored each of the three
modalities. A third rater was brought in if presentations had score
discrepancies of 2 or greater. All raters held at least a master’s de-
gree, and spoke English as their native language. Five of the six
raters were female. For scoring, two raters were randomly assigned
to one of three scoring modalities: 1) video, 2) audio only, or 3)
transcript only. After being assigned, each rater completed an on-
line training session where they were familiarized with the task,
the custom-designed content scoring rubric and scoring modality.
Raters were then given two opportunities to calibrate on practice
videos, audio files, and transcript files prior to completing the scor-
ing activity. Raters scored the videos in two separate, roughly equal
batches. After completing the scoring, raters were asked to provide
their confidence rating on a scale of 0 to 100. Across modalities, the
average confidence rating was 77.5, 59.5, and 88 for video, audio
only, and transcript only, respectively.

4 ANALYSIS OF MODALITY BIAS IN HUMAN
SCORING

We use the rounded-down median of the two (or rounded median
of three) scores for each presentation, and combine the "weak"
and "deficient" score classes into a single class, given the smaller
number of video samples that were assigned these scores. As shown

1http://halef.org

Figure 1: Distribution of scores by modality

by Figure 1, the scores are primarily centered in the middle, with
very few presentations having median score of 3.0, or “proficient."

As can be seen in in Figure 2, the video modality has relatively
more high scores, the audio is relatively centered, and the transcript
modality has the most low scores. One reason for this could be that
the formality of language expected by audiences for text is generally
higher than what one might expect in speech. For example, one
presentation which received a score of 1.0 for transcript but a 3.0 for
video includes a significant number of disfluencies and reductions
("Um and then yo- from there you’re gonna wanna start planning um
around your future."). While these elements may look inappropriate
in a text transcript, they may be perceived as less so in the audio or
video modalities.

Figure 2: Distribution of scores within each modality

To determine whether there is a significant difference between
the distribution of human scores by modality, we ran a Kruskal-
Wallis test, or non-parametric 1-wayANOVA,which demonstrates a
significant difference in distributions with a p<0.00001.These results
are further bolstered by post-hoc Wilcoxon rank-sum tests, which
indicate no significant differences between themedians of transcript
and audio scores (p=0.670), but significant differences between those
of video scores and the other two modalities (p<0.01). 𝜒2 tests of
differences in categorical distributions also confirm similar patterns
in modality-specific median differences at the 𝛼 = 0.99 significance
level. From these tests, it is clear that there is a bias toward higher
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scores when the video modality is scored, in comparison to other
modalities.

We computed inter-rater reliability for each of the modalities
using the 0 to 4 scale with the original two raters, as shown in
Table 1 2. We observed the highest inter-rater reliability for the
transcript modality, followed by video and audio. It is interesting
that the video modality has a relatively low agreement even though
coders of videos had relatively high confidence in their ratings.
Coders may have been more confident because they had additional
information around nonverbal communication that could help to
ease their understanding, as has been found in other studies [2].
However, since the ratings were about content, not about delivery,
the inclusion of the video may have introduced additional sources
of bias that could have influenced rater decisions and ultimately
impacted their level of agreement.

Table 1: Inter-rater agreement statistics.

Metric Video Audio Transcript
ICC (two-way random, type=consistency) 0.502 0.481 0.694
Quadratic Weighted Kappa (QW^) 0.28 0.27 0.65
Exact Agree 0.543 0.531 0.407
Adj Agree 0.309 0.383 0.407
Ex+Adj Agree 0.852 0.914 0.926
Spearman 𝜌 0.365 0.39 0.533

5 ANALYSIS OF MODALITY BIAS IN
MACHINE SCORING

The previous section demonstrates a clear difference in the way
human raters perceive and score the proficiency of content in infor-
mative presentations. This section extends these findings to analyze
how this bias could potentially affect machine scoring and examines
the efficacy of machine learners to predict scores of presentations
by emulating the type of modal information a human scorer would
observe when reading a transcript, listening to a recording, or
watching a video. Note that the aim of these experiments is not to
push the state of the art in presentation scoring, but to investigate
the effect of modality bias. We therefore focus on feature sets and
learners that have been shown to be effective in previous work on
multimodal scoring tasks.

5.1 Feature Extraction
We compute time-aggregated feature sets based on the features a
human would have when rating a specific modality. The number of
features increases from text, to audio, to video, just as it would for
a human rater. Specifically, the following features are extracted due
to their ability to represent the given modality in a time-aggregated
manner.

For the text modality (transcriptions), we extract document em-
bedding features for text computed using the doc2vec method.
Doc2Vec is an algorithm which creates dense vectors based on
variable length sections of words within a document. In this way,
the algorithm is able to represent a full document in a numerical
vector and capture information beyond simply counts of the words
in a document[12].

2Note that we brought in a third rater to resolve any discrepancies larger than 2.

For the audio modality, we extract speech features using the
OpenSMILE toolkit [9]. We use the minimalistic set of voice pa-
rameters collected in the eGeMAPS feature set, which has been
shown to capture physiological changes in voice production and
support predictions of emotion and mental state in speech[8]. This
modality also includes the text features which capture the content
of the presentation.

To capture the videomodality, we extract 427-dimensional time-
series features at a 10 FPS sampling rate using theOpenFace toolkit[1]
based on (a) tracking head poses, (b) tracking gaze directions, and
(c) facial landmarks in both 2D and 3D estimations, (d) parameters
describing both rigid and non-rigid face shapes, and (d) estimation
of occurrence and intensity of Action Units. Following [7], we av-
erage these 427-D frame vectors using a moving window size of 10
frames. Then we apply an unsupervised clustering method on these
averaged vector sequences to find 𝐾 clusters. We then represent the
entire sequence by the corresponding discrete cluster identifiers
(called “visual words”). After this process of converting frame-based
vectors into ‘text documents’, we use the term frequency-inverse
document frequency (TF-IDF) of all visual word tokens as feature
inputs for each video. These visual features are appended to the
speech and content features from the audio and text modalities to
form the video feature set.

5.2 Machine Learning Models
We use SKLL3, an open-source Python package that wraps around
the scikit-learn package [16], to run 10-fold cross-validation
experiments based on the three score classes described in Section 4.
We train the models using the rounded median of all the modality
scores (henceforth, overall median score) for a particular presenta-
tion as labels, under the assumption that such a label can represent
a holistic score across modalities. We evaluate these models in two
ways: first, with the overall labels described above, and second,
based on the modality-specific labels (scores assigned based on the
modality of features used to train the model). We use the same folds
across all experiments. We select folds by randomized stratified
sampling to ensure that the fold distributions are equally sampled
from all label classes.

For all machine learning experiments with time-aggregated fea-
tures, we experiment with three classification learners: linear sup-
port vector machines, random forests, and logistic regression clas-
sifiers, and use quadratic weighted kappa as objective functions for
optimizing learner performance. We further tune and optimize the
free parameters of each learner using a grid-search method.

5.3 Dealing with Label Bias
Recall from Figure 1 that the score distributions for each modality
are not uniform, and we observe that machine learning models
trained directly on our data as is predict the majority class for
nearly all samples in the test set of each cross-validation fold.

To accommodate for the limited number of samples for the low-
est and highest scored presentations, we expand our dataset by
adding synthetic samples of these categories using Gaussian noise

3https://github.com/EducationalTestingService/skll
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Table 2: Automated score prediction results on our aug-
mented dataset with modality-specific feature sets. We
trained on the overall median scores across all modalities
for all experiments reported, and report tests calculated
with overall and modality-score labels.

System Overall Score Modality Score
Modality Features Learner Acc. QW^ Acc. QW^

Text
doc2vec, Linear SVC 0.535 0.426 0.462 0.113

Logistic Regression 0.489 0.394 0.275 0.104
Random Forest 0.561 0.539 0.262 0.130

Audio
doc2vec, Linear SVC 0.584 0.394 0.663 0.202
eGeMAPS Logistic Regression 0.545 0.306 0.600 0.033

Random Forest 0.528 0.509 0.237 0.088

Video
doc2vec Linear SVC 0.403 0.247 0.550 0.164
eGeMaPS, Logistic Regression 0.502 0.428 0.525 0.172
OpenFace Random Forest 0.582 0.568 0.350 0.256

augmentation. For each fold, we randomly sample with replace-
ment from the minority classes within that fold4, until each class
has equal number of instances for every class, and perturb each
sample with mean-zero Gaussian noise with a standard deviation
corresponding to the sample standard deviation of that class. In
other words:

𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐 𝑠𝑎𝑚𝑝𝑙𝑒 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑎𝑚𝑝𝑙𝑒 + 𝜎N(0, S)

where S is the standard deviation of the class being sampled from
and 𝜎 is a multiplication factor (for the purposes of our experi-
ments, we set 𝜎 = 0.01. Using this method, we generate ten folds of
approximately 18 instances each, with 6 instances for each of the
three classes.

5.4 Observations and Results
Table 2 shows the results of our automated content scoring ex-
periments. In the Modality Score column, we report the results of
training classifiers on the Overall Score and testing on the score
related to the specific modality.

We observe that performance of the best learner in the case of
the video feature set is generally higher than that of the text feature
set, both in terms of quadratic weighted kappa (QW^; recall that we
optimized on this) and accuracy. This trend is also consistent both
when we test on the overall score or the modality-specific score
label. However, things do not pattern as clearly in the case of audio
features. To investigate this further, we plotted the distribution of
scores by modality as predicted by the Linear SVC classifier in Fig-
ure 3. This suggests that the distribution of scores across modality
as predicted by the automated scoring models demonstrates a diver-
gence from the distributions of modality-specific human scores. In
particular, both the skew toward high scores in the video modality
and the skew toward low scores in the text modality is not as acute
in machine scores relative to the human score distributions.

In other words, we observe clear differences between how fea-
tures extracted from different modalities predict the overall score
versus scores assigned specifically to their counterpart modalities.

4Performing this step for every fold ensures that no generated instance ends up in a
different fold than the original instance it is based upon (to ensure we aren’t training
and testing on the “same” data).

Figure 3: Distribution of scores bymodality predicted by Lin-
earSVC learners.

6 DISCUSSION: IMPLICATIONS OF BIAS FOR
MULTIMODAL SCORING

Our work exposes multiple sources of bias that need further explo-
ration and consideration for automated multimodal data analysis.

Chief among these is the issue of modality bias in both human
and machine scoring. We noticed significant differences between
content proficiency scores that human raters assigned to a presen-
tation when they just viewed the video versus when they either
listened to the audio or read the transcript. This in turn raises the
following question that is crucial for automated machine scoring:
what is the “true/gold” content score to be used for training machine
scoring algorithms? Is it the score assigned just by looking at the
text transcript or is it, as we have considered in this paper, the
median score of all modalities? If the former, do other modalities
bias the rater from the “true” score?

In our case, transcript scoring yielded higher inter-rater agree-
ment and rater confidence. It’s possible that the audio/video modal-
ities introduced other factors that influenced the scores, rather
than focusing strictly on content. Factors such as the vocal deliv-
ery (e.g., tone/pitch, pacing, etc.) could have impacted the way the
content was spoken and therefore influenced the rater during the
evaluation. Future research should explore whether other reviewer
characteristics, such as race and gender, could affect scoring bias.

The second broad issue is that of how to deal with label bias,
i.e., the problem of having significantly fewer examples of data
in some score classes than others. This paper has presented one
simple method of dealing with this bias, by artificially augmenting
the dataset by perturbing samples with Gaussian noise. We could
also investigate the efficacy of alternate methods, such as SMOTE
oversampling [5], in future work.

There are two other important sources of bias that we did not
focus on in this exposition, but which are nonetheless important to
consider – gender and race [13]. Further evaluation of the relation-
ship between the gender and race of the presenters and reviewers
in conjunction with the the modality of the presentation is critical
to ensuring fairness in scoring. Future studies should explore this
interplay and how any biases reflected in human scoring can enter
into automated scoring.

The continued study of human bias is crucial to factor in not only
for machine scoring, but also for policy and educational research
design going forward.
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