Use of a Telehealth Platform to Automatically Assess Prosodic Contours in Parkinson Disease

Andrew H. Exner1, Vikram Ramanarayanan2, David Pautler2, Sandy Snyder1, Hardik Kothare2, Jackson Liscombe2, Oliver Roesler2, William Burke2, Michael Neumann2, David Suendermann-Oeft2, & Jessica E. Huber1

1Purdue University, 2Modality.AI
Relevant Disclosures

• Financial Disclosures
 • Modality.AI, Inc., Salary & Shares
 • Vikram Ramanarayanan – Chief Scientific Officer
 • David Pautler – Founder, Chief Technology Officer
 • Hardik Kothare – Research Scientist
 • Jackson Liscombe – Research Scientist
 • Oliver Roesler – Research Scientist
 • William Burke – Director
 • Michael Neumann – Research Scientist
 • David Suendermann-Oeft – Founder, Chief Executive Officer
 • Purdue University, Salary
 • Andrew Exner – doctoral student, trainee on NIH T32 grant
 • Sandy Snyder – Research Associate
 • Jessica Huber – Professor

• Non-Financial Disclosures
 • Jessica Huber – Medical advisory board for Rock Steady Boxing
Parkinson Disease

• Neurodegenerative disorder primarily affecting motor system
 • Motor, cognitive, and sensory
• Speech: Hypokinetic Dysarthria
 • Hypophonia
 • Variable rate
 • Breathiness
 • Monopitch
 • Monoloudness
 • Imprecise consonants
 • Decreased intelligibility
Hypokinetic Dysarthria: Prosody

• Hypokinetic prosody abnormalities include
 • Reduced f_0 range and variability (monopitch)
 • Reduced ability to use prosody for emotional expression
 • Not everything is impaired
 • Lexical stress is spared
 • Need: what is impaired vs what is not and why?
 • i.e., is sentence mode differentiation impaired?
Rationale

• Needs
 • Accessibility of care by people with PD
 • Need for monitoring of dynamic symptoms
 • Burden of technical assessment and measurement

• Solution
 • Conversational artificial intelligence agent
 • Automatic computation and delivery of relevant patient data

• Features
 • Automated, customizable assessment
 • Convenient time
 • Home environment
 • Minimal technological requirements
 • Automatic computation of speech acoustic metrics, facial kinematic metrics, and limb motor function
 • User-friendly dashboard for healthcare providers
 • Symptom tracking over time
Aims and Hypotheses

• Compare automatic measures produced by the Modality system with default Praat settings and data extraction algorithms to human-generated measurements calculated by members of the Purdue Motor Speech Lab in order ascertain the feasibility and reliability of automated analytics for assessing the prosody of people with PD.

• Hypothesis: There will be no significant differences between the automated f_0 measures generated through default Praat settings and those made by human researchers.
Methods: Participants

• $n = 40$ people with PD; 23 age- and sex-matched controls

• Inclusion criteria:
 • Age 30-85
 • Dx idiopathic PD
 • Internet access
 • Device w/ microphone & camera
 • Self-reported adequate hearing and vision
 • Fluency in English

• Exclusion criteria:
 • Dx neurological disease other than PD
 • Hx HNC cancer or surgery (except for implantation of DBS)
 • Hx voice disorder or pulmonary disease
 • Recent Hx smoking (<5 years)
 • More than moderate cognitive impairment <10 on MoCA)
Methods: Initial Visit

• WebEx meeting with lab staff member
 • Discuss Study
 • Obtain Consent
 • Obtain Medical History
 • Complete Montreal Cognitive Assessment
 • Orientation to System Access
 • Receive individualized link to complete online assessments
Methods: Conversations with Tina

- Number of Assessments: 4
- Frequency of Assessments: 1/week
 - Median 8 days, Mean 10 days
- Timing: When convenient for participants, on-state of PD medication
- All tasks completed each session
- Total Duration: 15-20 minutes

- Speech Tasks
 - Sustained vowels
 - Sentence Intelligibility Test (SIT)
 - Reading 1 paragraph of Rainbow Passage
 - Short narrative
 - *Intonational prosody*
 - Monologue

- Non-Speech Tasks
 - Abbreviated oral mechanism exam
 - Finger tapping

- Surveys
 - Parkinson Disease Questionnaire (PDQ-39)
 - Communication Participation Bank, Short (CPIB-S)
 - Task Load Index (TLX)
Methods: Intonational Prosody Task

• Participants presented with a short scenario and asked to say the sentence provided.
 • Five pairs of sentences (three words each)
 • Same except for the prosodic falling or rising contour cued by different scenarios

• Examples

 • Tina: “You just got back from holidays in Florida. Jane asks if the weather was nice. Now you say...”
 • Target: “It was hot.” (Statement)

 • Tina: “Jane says her vacation to Alaska was too hot. Now you say...”
 • Target: “It was hot?” (Question)
Methods: Measurements

- **Key measurements of intonational contour direction and variability**
 - Minimum f_0 (Hz)
 - Maximum f_0 (Hz)
 - Standard deviation of f_0 (Hz)
 - Range of f_0 (maximum - minimum f_0) (Hz)

- **Human-Corrected Measurements**: standard Praat settings to assess pitch points within the Manipulation file
 - Deleting pitch points during voiceless segments
 - Adding pitch points not identified by Praat (e.g., rapid pitch changes, occurring above/below Praat’s default)
 - Correcting pitch points during diplophonia

- **Modality.AI system (1)**: automatic extraction of the same f_0 values using Praat’s default settings
 - No alteration of the default pitch contour extracted

- **Modality.AI system (2)**: optimized f_0 extraction with optimized parameters based on subset of data
Methods: Pitch Correction

- High prevalence of aperiodic voicing, periodic vocal fry, and diplophonia
 - Of 788 utterances, 486 (61.7%) contained aperiodic voicing
 - Of these, the mean percentage of aperiodic voicing per utterance was 13.3% (± 9.2 % SD)
Example: Noise marked with pitch periods during a /t/
Example: No f_0 marked during falling vocalization
Example: Correction of falling contour
Example: Roughness/Fry (Female) (Original)
Example: Roughness/Fry (Female) (Corrected)
Methods: Statistical Analysis

• To determine whether the automated measurements differed significantly from the clinician-researcher measurements
 • ICC estimates and their 95% confidence intervals were calculated
 • Excel
 • Single-rating, absolute-agreement, two-way random-effects model with one rater across all subjects
Results: Means and Standard Deviations of Fundamental Frequency Measures in a Prosody-Specific Speech Task, Human-Corrected vs Unoptimized Automated (n = 40 PD, 23 controls)

<table>
<thead>
<tr>
<th>Frequency Measure</th>
<th>Human-Corrected</th>
<th>Automated</th>
<th>ICC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum f0 (Hz)</td>
<td>132.7</td>
<td>123.48</td>
<td>0.611</td>
</tr>
<tr>
<td>Maximum f0 (Hz)</td>
<td>268.55</td>
<td>334.27</td>
<td>0.410</td>
</tr>
</tbody>
</table>

ICC: Intraclass Correlation Coefficient
Results: Means and Standard Deviations of Fundamental Frequency Variation in a Prosody-Specific Speech Task, Human-Corrected vs Unoptimized Automated ($n = 40$ PD, 23 controls)

- Standard Deviation of Fundamental Frequency (f0SD) Hz
 - Human-Corrected: 39.74
 - Automated: 56.81
 - ICC: 0.419

- Range of Fundamental Frequency (Max - Min) (Hz)
 - Human-Corrected: 135.85
 - Automated: 210.79
 - ICC: 0.331
Results: Mean Absolute Errors of Fundamental Frequency Metrics

<table>
<thead>
<tr>
<th></th>
<th>Default</th>
<th>Optimized (Combined)</th>
<th>Optimized (Predicted Sex)</th>
<th>Optimized (Known Sex)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>13.4</td>
<td>8.97</td>
<td>8.06</td>
<td>7.08</td>
</tr>
<tr>
<td>SD</td>
<td>19.6</td>
<td>7.8</td>
<td>6.16</td>
<td>6.05</td>
</tr>
<tr>
<td>Minimum</td>
<td>15.69</td>
<td>14.83</td>
<td>13.7</td>
<td>12.88</td>
</tr>
<tr>
<td>Mean Absolute Error (Hz)</td>
<td>69.15</td>
<td>16.98</td>
<td>13.79</td>
<td>12.71</td>
</tr>
</tbody>
</table>
Results: Means and Standard Deviations of Fundamental Frequency Measures in a Prosody-Specific Speech Task, Human-Corrected vs Optimized Automated ($n = 40$ PD, 23 controls)

![Bar chart showing minimum and maximum fundamental frequency (f0) measures with ICC values.]

- Minimum f_0 (Hz): Human-Corrected 132.7, Automated 139.35, ICC: 0.691
- Maximum f_0 (Hz): Human-Corrected 268.55, Automated 265.48, ICC: 0.848
Results: Means and Standard Deviations of Fundamental Frequency Variation in a Prosody-Specific Speech Task, Human-Corrected vs Optimized Automated ($n = 40$ PD, 23 controls)

![Graph showing Standard Deviation of Fundamental Frequency (Hz)](image1)

![Graph showing Range of Fundamental Frequency (Max - Min) (Hz)](image2)

- **Standard Deviation of Fundamental Frequency (f0SD)**
 - Human-Corrected: 39.74 Hz
 - Automated: 36.61 Hz
 - ICC: 0.763

- **Range of Fundamental Frequency (Max - Min) (Hz)**
 - Human-Corrected: 135.85 Hz
 - Automated: 126.13 Hz
 - ICC: 0.758
Discussion: Reliability of Prosodic Measures

• Initial substantial differences in human-corrected and automated measures of all 4 f_0 measures
 • Minimum f_0 differences were small, likely of little to no clinical significance
 • Other differences were larger and likely of clinical significance
• Following optimization, differences are significantly reduced
• Remaining Issues to be Addressed
 • How to detect and correct prevalent aperiodic voicing
 • How to prevent autocorrelation method from assigning pitch periods to unvoiced segments without changing pitch floor/ceiling
Discussion: Clinical Feasibility

• Patients can perform this task independently over the internet
• System can identify pitch periods with moderate-to-good accuracy
• System reported intonation measures have moderate-to-good reliability with human-corrected measures
Future Directions

• Determine whether optimized parameters can generalize to a larger sample of people w/ PD (in process)

• Nuclear tone analysis (in process)
 • Compare whole-utterance intonation contour
 • To nuclear tone (final word in utterance) contour
 • To determine which is a better representation of speaker’s intonation (for PD)

• Compare objective measurements to subjective ratings of rate and naturalness (in process)
 • E.g., PDQ-39, CPIB-S, clinician ratings of speech severity
Acknowledgments

• Undergraduate researchers in the Purdue Motor Speech Lab
• NIH T32 Training Grant (SLHS @ Purdue, 2021-2022)
• Modality.AI Team
Questions?
References

Example: Roughness (Male) (Original)
Example: Roughness (Male) (Corrected)
Example: Roughness/Fry (Female) (Original)
Example: Roughness/Fry (Female) (Corrected)
Results: Means and Standard Deviations of Fundamental Frequency Measures in a Prosody-Specific Speech Task, Human-Corrected vs Unoptimized Automated ($n = 40$ PD, 23 controls)

<table>
<thead>
<tr>
<th></th>
<th>Human-Corrected Mean (SD)</th>
<th>Automated Mean (SD)</th>
<th>ICC (95% CI) (agreement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum f_0 (Hz)</td>
<td>132.70 (36.03)</td>
<td>123.48 (37.42)</td>
<td>0.611 (0.538, 0.672) (moderate)</td>
</tr>
<tr>
<td>Maximum f_0 (Hz)</td>
<td>268.55 (94.32)</td>
<td>334.27 (134.41)</td>
<td>0.410 (0.218, 0.551) (poor)</td>
</tr>
<tr>
<td>f_0SD (Hz)</td>
<td>39.74 (25.92)</td>
<td>56.81 (37.08)</td>
<td>0.419 (0.243, 0.550) (poor)</td>
</tr>
<tr>
<td>f_0 Range (Hz)</td>
<td>135.85 (79.51)</td>
<td>210.79 (131.98)</td>
<td>0.331 (0.122, 0.488) (poor)</td>
</tr>
</tbody>
</table>
Results: Means and Standard Deviations of Fundamental Frequency Measures in a Prosody-Specific Speech Task, Human-Corrected vs Optimized Automated \((n = 40 \text{ PD, 23 controls})\)

<table>
<thead>
<tr>
<th></th>
<th>Human-Corrected Mean (SD)</th>
<th>Automated Mean (SD)</th>
<th>ICC (95% CI) (agreement)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum (f_0) (Hz)</td>
<td>132.70 (36.03)</td>
<td>139.35 (34.56)</td>
<td>0.691 (0.637, 0.735) (moderate)</td>
</tr>
<tr>
<td>Maximum (f_0) (Hz)</td>
<td>268.55 (94.32)</td>
<td>265.48 (87.60)</td>
<td>0.848 (0.827, 0.866) (good)</td>
</tr>
<tr>
<td>(f_0)SD (Hz)</td>
<td>39.74 (25.92)</td>
<td>36.61 (22.72)</td>
<td>0.763 (0.727, 0.794) (moderate)</td>
</tr>
<tr>
<td>(f_0) Range (Hz)</td>
<td>135.85 (79.51)</td>
<td>126.13 (74.64)</td>
<td>0.758 (0.722, 0.790) (moderate)</td>
</tr>
</tbody>
</table>
F0 Tuning Process

• Single measurer identified 575 turns of interest
• Ran Praat's default pitch calculation algorithm
 • "Sound: To Pitch", autocorrelation method, time step = 0.0, pitch floor = 75Hz, ceiling = 600Hz
• Human-corrected contours
• Compared f0 metrics (e.g., mean) from the reference contours and our baseline predicted ones using mean absolute error (MAE). **Green bars.**
• Ran 7,186 pitch calculations using different Praat algorithms and settings.
• Extracted f0 metrics and found Praat settings that minimize MAE. **Blue bars.**
• Identified the optimal settings for known sex-based cohorts. **Red bars.**
• Ran a machine learning experiment to predict patient sex. **Yellow bars.**
• Implemented code for doing the last experiment.
Tuning Observations

• It is well known that automated pitch extraction is best when one uses sex-specific settings.

• This was shown in our results as well, though the increase in metric accuracy was not that big (compare red to green bars).

• Nevertheless, using a machine classifier to predict sex (since we may not always know it at the time of metric extraction) was almost as good as knowing the sex a priori (yellow vs green bars) and still better than a sex-agnostic pitch extract algorithm (red vs yellow bars).

• All three algorithms, however, show drastic improvement over the default Praat settings, with most reduction in error being for max F0.
Tuning Parameter Space

- \(f0_type = "ac" \) (autocorrelation) or \("cc" \) (cross-correlation)
- \(\text{pitch_floor} = 10-600 \text{ Hz} \)
- \(\text{pitch_ceiling} = 100-700 \text{ Hz} \)
- \(\text{max_candidates} = 1-100 \)
- \(\text{very_accurate} = "on" \) or \("off" \)
- \(\text{silence_thresh} = 0.01-1.0 \)
- \(\text{voicing_thresh} = 0.1-1.0 \)
- \(\text{octave_cost} = 0.0-1.0 \)
- \(\text{octave_jump_cost} = 0.1-1.0 \)
- \(\text{voiced_unvoiced_cost} = 0.1-1.0 \)
- \(\text{kill_octave_jump} = "yes" \) or \("no" \)
- \(\text{smoothing} = 0 \) - 100
Old Praat F0 Code

• To Pitch: 0, 75, 600
New Praat F0 Code: Step 1 Predict Sex

- `f0_type$ = "cc"`
- `pitch_floor = 55.0`
- `max_candidates = 9`
- `very_accurate$ = "off"`
- `silence_thresh = 0.07`
- `voicing_thresh = 0.49`
- `octave_cost = 0.03`
- `octave_jump_cost = 0.5`
- `voiced_unvoiced_cost = 0.16`
- `pitch_ceiling = 350.0`
- `kill_octave_jump$ = "no"`
- `smoothing = 25`

To Pitch (cc): 0.01, pitch_floor, max_candidates, very_accurate$, silence_thresh, voicing_thresh, octave_cost, octave_jump_cost, voiced_unvoiced_cost, pitch_ceiling

Smooth: smoothing

- `sex$ = "F"`
- `if (mean_f0 <= 156.67555)`
 - `sex$ = "M"`
- `elif (mean_f0 <= 189.532093) and (min_f0 >= 90.901626) and (min_f0 <= 127.179596)`
 - `sex$ = "M"`
- `endif`
New Praat F0 Code: Step 2 Create Sex-Optimized Contour

```
ll_type$ = "ac"
very_accurate$ = "off"
kill_octave_jump$ = "no"
if sex$ == "F"
  pitch_floor = 125.0
  max_candidates = 3
  silence_thresh = 0.03
  voicing_thresh = 0.57
  octave_cost = 0.02
  octave_jump_cost = 0.6
  voiced_unvoiced_cost = 0.2
  pitch_ceiling = 500.0
  smoothing = 24
else
  pitch_floor = 75.0
  max_candidates = 14
  silence_thresh = 0.04
  voicing_thresh = 0.56
  octave_cost = 0.01
  octave_jump_cost = 0.45
  voiced_unvoiced_cost = 0.19
  pitch_ceiling = 350.0
  smoothing = 22
endif
To Pitch (ac): 0.01, pitch_floor, max_candidates, very_accurate$, silence_thresh, voicing_thresh, octave_cost, octave_jump_cost, voiced_unvoiced_cost, pitch_ceiling
```