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•  Configurable Articulatory Synthesizer (CASY) used as the vocal tract model for FACTS simulations 
•  Auditory prediction requires both process and observation models. 

• Process model: predict the next articulatory state from the current state and current motor command (x[t], u[t] à 
x[t+1])  

• Observation model: predict the current sensory state from the current articulatory state (x[t+1] à y[t+1]) 
•  Somatosensory prediction uses an identity function.  
•  Training Data for learning models: ~2900 sweeps of the CASY synthesizer covering different regions of the vocal tract 

Background 

Modeling adaptation in FACTS 
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Modelling sensorimotor adaptation in  
a state feedback control model 

FACTS model 
(Feedback Aware  

Control of Tasks in Speech) 

•  Adaptation is driven by sensory 
errors (as caused by, e.g., an 
external perturbation of vowel 
formants) 

•  Errors can update either the forward 
model or the control policy, or both 

•  If errors update the forward model, 
this model must be used in planning 
future movements. 

•  If errors update the forward model, 
do they update the state prediction 
model, the sensory prediction 
model, or both? 

A simplified state-feedback 
controller. The lower-level 
(articulatory) controller in FACTS 
has this structure. 
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•  FACTS is a hierarchical control model 
which links the control of high-level 
speech tasks with lower-level control of 
speech articulation. 

•  FACTS builds on previous task- and 
feedback-based controllers (Task 
Dynamics, SFC). 

•  FACTS is able to replicate online 
responses to auditory and somatosensory 
perturbations of speech 

•  Currently, FACTS does not include 
adaptive control to account for changes in 
behavior over time 
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Sensorimotor adaptation as changes  
to the sensory prediction model 

Sensorimotor adaptation as changes  
to the state prediction model 
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Learning the state and sensory prediction models 

Locally Weighted Projection Regression Recurrent Neural Networks (LSTMs) 

•  Point-to point prediction  
•  Learns a local receptive field mapping for different regions of the 

input-output space 
•  Used for process and observation models 
•  More interpretable relative to DNN-based models 
•  As implemented, inaccurate for process model, which leads to 

model instability 

•  Sequence to sequence prediction 
•  Learns a nonlinear mapping of the input-output space 
•  Black box model. Interpretability not straightforward.  
•  Investigated for  

process model  
because of instability 
in LWPR models 
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•  Updates to LWPR sensory prediction 
model on a trial-by-trial basis 

•  After baseline trial (black), model 
exposed to 20 trials  +100 Hz 
perturbation of F1(redàblue).  

•  A final washout trial (green) with no 
perturbation tests for adaptation. 
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•  Updates to LWPR model do 
cause changes to behavior. 

•  Learning does not oppose 
perturbation 

•  Model learns to predict 
auditory perturbation, leading 
to loss of compensatory 
response (as seen on trial 1) 

•  Potential for adaptation only if 
model could be used to 
optimize motor command 

lab speech motor
action + control

Goal: 
•  Update LSTM state prediction 

model on a trial-by-trial basis 
•  Updating state prediction model 

may provide a way to model 
adaptation without needed to 
incorporate forward models into 
control search/optimization. 
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Current problems and potential solutions 
• Sequence prediction 

•  Model currently trained on whole-trial sequences.  
•  Need to predict a single time point. 
•  Lose desirable smoothing with single-point prediction. 

• Model accuracy 
•  How to assess accuracy 
•  What is accurate enough? 
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