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ABSTRACT
Temporal patterns of verbal and non-verbal behavior in human in-
teractions reveal our attitudes toward each other and can have an
outsized impact on outcome of activities such as negotiations, co-
ordination and team work. However, not much work has been done
towards automatically analyzing the temporal aspects of such be-
havior during collaborative tasks. In this paper, we take an initial
step toward this by proposing a novel feature that captures conver-
gent or divergent behavior between dyads involved in a collabora-
tive problem solving task. This feature, dubbed histograms of cooc-
currence, capture how often different prototypical behavioral states
exhibited by one person co-occur with those exhibited by his/her
partner over different temporal lags. We show that not only does
such a feature bring out the differences between dyads and non-
dyads, but is also interpretable in that it tells us which behavioral
states are most likely to occur in true dyads as opposed to nominal
or artificial dyads.
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1. INTRODUCTION
Research shows that complex interactive activities such as team
work and collaboration are more effective when participants are not
only engaged in the task but also exhibit behaviors that facilitate in-
teraction [17]. Successful collaboration is often manifested in what
is known as “entrainment” or convergence between the participants
of such collaboration. In spoken face-to-face communication this
may include synchronization in speaking rate or intonation patterns
[12] of the collaborators as well as non-linguistic aspects such as
participants mirroring each other’s gestures and other behavioural
patterns [8, 5]. The participants of text-based collaboration often
converge in their choice of words or communication style [7]).
The degree of entrainment has been found to be positively corre-
lated with the overall success of collaboration as well as predictive
of the polarity of participants’ attitudes (see [9] for review). So-
cial psychologists have further postulated that behavioral mirroring

presents an evolutionary component associated with the develop-
ment of social bonds and empathy through cooperation [8]. In the
educational context, entrainment between collaborators or between
student and the tutoring system has been shown to be correlated
with learning gain and improvement in students’ performance (cf.
for example [18]). In addition, studies have explored its impact on
interpersonal skills, coordinated activity, negotiations, and how in-
dividuals influence the behaviors of others [2] [5]. Other studies in
the literature have also demonstrated the importance of understand-
ing affect and gaze dynamics during such collaborative interactions
in learning environments [16, 1, 4].

Recent research has explored the impact of behavioral synchronic-
ity of cognitive and non-cognitive behavior in interactive collab-
orative activity [3]. In particular, Luna Bazaldua et al. demon-
strated a statistically significant synchronicity of cognitive and non-
cognitive behavior between dyads engaged in online collaborative
activity [3]. However, in their study participants were not able to
see each other and only interacted over a text-based chat interface.
This is an important point to note since the ability to converse face-
to-face can significantly impact the nature of the dyadic interac-
tion. Therefore, in this paper we focus on behavioral patterns of
emotional expressions between dyads during face-to-face conver-
sation through a video conferencing system. Our hypothesis is that
dyads engaged in face-to-face collaborative activity demonstrate a
significantly different pattern of behavior as opposed to nominal
dyads who are artificially paired up with each other. Notation-wise,
we use the term nominal dyad or artificial dyad interchangeably to
mean two subjects whose data are analyzed as if they were inter-
acting dyadically, but were actually not.

Explicitly modeling temporal information in such dyadic interac-
tion data is important because each person’s emotional state or be-
havior need not stay constant over the course of the interaction –
they could get fatigued over time, or be more nervous at the very
beginning (resulting in repetitive, cyclic fidgeting behavior), but
gradually settle into a comfort zone later, as they get more famil-
iar with the task and each other. For similar reasons their body
language and emotional state can also fluctuate over the time se-
ries. However, current feature extraction approaches that aggregate
information across time do not explicitly model temporal cooccur-
rence patterns; consider for instance that one person’s emotional
state – joy – generally follows his interlocutor’s emotional state
– say neutral – in a definitive pattern during certain parts of the
interaction. Capturing such patterns might help us (i) explicitly
understand the predictive power of different features (such as the
occurrence of a given pair of emotions) in temporal context (such
as how often did the emotional state of one person in the dyad oc-



Figure 1: Schematic illustration of the Tetralogue collaborative problem solving simulation. The platform allows for the capture of
multimodal data streams including video, audio, text and action log files while participants engage in a collaborative activity.

cur given the previous occurrence of another emotional state of the
other person in the dyad), thus allowing us to (ii) obtain features
that are more interpretable on visual inspection. We would like to
take an initial stab at bridging this gap in this paper. Specifically,
we propose to adapt a feature based on histograms of cooccurrences
[19, 20, 15] that was developed earlier for analyzing a single time-
series (say, from one person), and extend it to the case of dyads.
The feature models how different “template” emotional states of
one person in a dyad co-occur within different time lags of a “tem-
plate” emotional states of the other person in the dyad over time.
Such a feature explicitly takes into account the temporal evolution
of emotional states in different interaction contexts. This feature
has been previously shown to perform well for automated multi-
modal presentation scoring [14], on phone classification tasks [15]
as well as for unsupervised pattern discovery [19, 20].

2. DATA
2.1 The Tetralogue CPS Platform
We used an online collaborative research environment developed
in-house – the Tetralogue [11, 21, 3]. This platform includes both
traditional assessment components, such as a set of multiple-choice
items on general science topics, a simulation based assessment, a
personality test, and a set of background questionnaire. The sim-
ulation task is on geology topics. The simulation-based task was
developed as a task for individual test takers who will interact with
two avatars and as a collaborative task that requires the collabo-
ration among two human participants and two avatars in order to
solve geology problems. The participants, who may be in different
locations, interact through an online chat box and system help re-
quests (selecting to view educational videos on the subject matter).
The main avatar, Dr. Garcia, introduces information on volcanoes,
facilitates the simulation, and requires the participants to answer a

set of individual and group questions and tasks. A second avatar,
Art, takes the role of another student who shows his own answers
to the questions posed by Dr. Garcia, in order to contrast his infor-
mation with that produced by the dyad.

2.2 Data collection
Twenty-six subjects participated in this study and were paired in
dyads using random selection. At the time of the study, the partic-
ipants were graduate students or recently graduated from different
universities across the United States and Europe attended the Sum-
mer Internship Program at Educational Testing Service. Informa-
tion about the study was provided to each participant individually
and consent forms were obtained from them. In addition, each par-
ticipant filled a brief checklist after the session in order to obtain
their opinions about the experiment.

As mentioned earlier, the dyads were able to interact with each
other over a videoconferencing interface. The video from each ses-
sion was captured resulting in thirteen pairs of time aligned video
recordings. Each dyad reviewed and responded to the same educa-
tional material and academic questions. The duration of dyad ses-
sions varies from 36 minutes to 68 minutes, with an average length
of about 52 minutes. This resulted in a total of 1,356 minutes of
video data, which formed our core evidentiary dataset and was an-
alyzed utilizing automated facial expression analysis as described
in the following section.

2.3 Video Processing
Facial expression analysis of the video data was performed using
the FACET SDK, a commercial version of the Computer Expres-
sion Recognition Toolbox (CERT) [10]. This tool recognizes fine-
grained facial features, or facial action units (AUs), described in the



Facial Action Coding System [6]. FACET detects human faces in a
video frame, locates and tracks facial features and uses support vec-
tor machine based classifiers to output frame-by-frame detection
probabilities of a set of facial expressions: anger, joy, contempt,
surprise, etc.

3. HISTOGRAMS OF COOCCURRENCE
(HOC) FEATURES

Recall that one of the goals of this work is to capture the temporal
evolution of the emotional states (as captured by the FACET fea-
tures) of each person in true dyads and understand how these emo-
tional states converge or diverge relative to nominal or artificial
dyads. The motivation is that explicitly examining and modeling
the evolution of each of these time series will result in richer fea-
tures as opposed to time-aggregated features. With this in mind, we
elucidate below a general methodology to compute such a feature
called histograms of cooccurrences (or HoC) that can be applied to
any multivariate time-series – in this paper we compute this feature
for the Emotion data stream. The advantage of this feature vector
over conventional time-aggregated one is that it explicitly encap-
sulates information regarding temporal co-occurrence patterns; so,
for example, it would model how often a certain prototypical emo-
tional state (such as joy) follows a second prototypical emotional
state (say, neutral) in a definitive pattern during different parts of
the collaborative task.

So that being said, the idea behind the histogram of cooccurrence
(HoC) feature is to count the number of times different prototyp-
ical behavioral/emotional states of one person in the dyad (repre-
sented by A in Figure 2) co-occur with those of the other person
in the dyad (B in Figure 2) at different time lags over the course
of the time series. As to what these prototypical behavioral/emo-
tional states are – while this is an interesting research question in
itself, for the purposes of this paper we use cluster centroids de-
rived from simple K-means clustering on the space of emotional
states (or FACET features) as prototypical states. Note that we per-
formed this clustering on the FACET features obtained from all
speakers in the dataset 1. We experimented with different cluster
sizes (8,16,32) and found that 16 clusters did a good job of captur-
ing the different clusters in the data (increasing the number of clus-
ters resulted in repeated cluster centroids while reducing it missed
out on some centroids).

Once we perform this clustering, we can replace each frame of each
input time series data matrix corresponding to both speakers in the
dyad (A and B) with the best matching cluster label (correspond-
ing to the cluster to which it belongs). This way, the data matrix
is now represented by a single row vector of cluster labels, Aquant
and Bquant . A HoC-representation of lag τ is then defined as a vec-
tor where each entry corresponds to the number of times all pairs
of cluster labels are observed τ frames apart. In other words, we
construct a vector of lag-τ co-occurrences where each entry (m,n)
signifies the number of times that an entry in the first time-series A
is encoded into a cluster label m at time t, while an entry in the sec-
ond time-series B is encoded into cluster label n at time t+τ (in the
row vectors Aquant and Bquant , respectively) [15, 14]. By summing
across the columns as shown in Figure 2, each interval can be rep-
resented by a single column vector where the elements express the

1All features obtained from the FACET SDK are normalized
and baselined (speaker-specifically) to a [−5,5] scale. Therefore
we assume that features obtained from different speakers are com-
parable due to this preprocessing.

Table 1: Means and standard deviations of distances between
HoC features computed between dyads and nominal dyads of
each speaker.

Speaker (True) Dyad Nominal Dyad
Mean Std Mean Std

1 0.25 0.50 1.66 0.41
2 0.25 0.50 1.60 0.50
3 0.29 0.38 1.30 0.44
4 0.29 0.38 1.48 0.41
5 0.28 0.42 1.24 0.53
6 0.28 0.41 1.49 0.49
7 0.26 0.42 1.35 0.45
8 0.26 0.42 1.45 0.47
9 0.16 0.58 1.4 0.62
10 0.16 0.58 1.72 0.5
11 0.29 0.46 1.5 0.52
12 0.28 0.46 1.48 0.52
13 0.18 0.54 1.48 0.55
14 0.18 0.54 1.41 0.57
15 0.21 0.53 1.39 0.6
16 0.21 0.52 1.57 0.53
17 0.17 0.58 1.7 0.4
18 0.17 0.58 1.68 0.57
19 0.16 0.62 1.97 0.44
20 0.16 0.62 1.4 0.68
21 0.24 0.36 1.48 0.37
22 0.25 0.37 1.31 0.31
23 0.23 0.4 1.44 0.44
24 0.22 0.4 1.2 0.45
25 0.25 0.48 1.62 0.47
26 0.25 0.48 1.5 0.52

sum of all C2 possible lag-τ co-occurrences (where C is the num-
ber of clusters; in our case, 16). We can repeat the procedure for
different values of τ , and stack the results into one “supervector”.
Note however, that the dimensionality of the HoC feature increases
by a factor of C2 for each lag value τ that we want to consider. In
our case, we decide to choose four lag values of 0 to 3 frames (cor-
responding to 0-3s) in order to capture behavioral synchronicity or
asynchronicity within a 3 second window (see for instance [13]).

4. ANALYSES AND OBSERVATIONS
In order to observe how well HoC features capture dyadic behavior,
we randomly extracted 100 time-intervals (each 10 seconds long)
from the post-processed and synchronized feature streams for all
26 subjects. We then computed HoC features for each of these in-
tervals for each subject, respectively. Now recall that in this pool of
subjects, each subject has one true dyad with whom they completed
the Tetralogue task collaboratively. We hypothesize that the HoC
features computed for true dyads will be significantly different as
compared to the HoC features computed between artificial or nom-
inal dyads (who did not actually engage in a dyadic interaction).
While it should not be too surprising to have this hypothesis indeed
be true, explicitly testing this also allows us to ensure that our pro-
posed features capture something meaningful. So the goal of this
particular exercise is not necessarily to show that true dyads ex-
hibit different characteristics as compared to artificial dyads, but to
discover meaningful features that help us capture these differences.

In order to test the above hypothesis, we performed the following
steps for each speaker: (i) if a candidate dyad for that speaker was
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Figure 2: Schematic depiction of the computation of histograms of cooccurrences (HoC) (adapted from [14]). For a chosen lag value,
τ , and a time step t, if we find labels m corresponding to the first person (A) and n corresponding to the second person (B) occurring
τ time steps apart (marked in gold), we mark the entry of the lag-τ cooccurrence matrix corresponding to row (m,n) and the tth

column with a 1 (corresponding entry also marked in gold). Note that the indices corresponding to the first person in the dyad is
marked in blue while those corresponding to the second in red. We sum across the columns of this matrix (across time) to obtain the
lag-τ HoC representation.

his true dyad, then we computed distances between each of the
(100) HoC features computed for that true dyad only; (ii) however,
if this was not the case, then we computed distances between HoC
features computed on that speaker and each of the other 24 candi-
date dyads in the pool of speakers. We then applied a Wilcoxon
rank-sum test2 to test the hypothesis that the medians of the dis-
tance distributions computed in cases (i) and (ii) described above
were equal (α = 0.95).

We found that the distances computed between HoC features ex-
tracted from true dyads were significantly lower (p ≈ 0) than those
of distances between HoC features computed on artificial dyads
(see Table 1 for means and standard deviations of these popula-
tions computed for each speaker). This finding suggests that (i) not

2We used the results of a non-parametric Wilcoxon rank-sum
test instead of a parametric counterpart such as a t-test, as the data
failed a Kolmogorov-Smirnov test of parametricity. Note however
that applying a t-test gave similar results as in the case of its non-
parametric counterpart.

only do true dyads engaged in a collaborative interaction exhibit
specific characteristic patterns of emotional state cooccurences that
clearly sets them apart from artificial dyads, but (ii) such HoC fea-
tures allow us to capture these differences in an effective manner.

Figures 3 and 4 gives us some more insight into why these features
perform well. Figure 3 depicts the 16 cluster centroids computed on
(and therefore common to) all speakers. Notice that each column of
Figure 3 represents one cluster centroid, comprising different rel-
ative activation of different emotions – for instance, cluster 2 rep-
resents an emotional state with a higher activation of joy and pos-
itive emotion, while cluster 6 represents a more neutral emotional
state, encompassing an equal (and approximately zero) activation
of all emotions. Recall that these emotion clusters are common
to all speakers. Figure 4 shows feature distributions of HoC fea-
tures computed on one particular speaker and his/her actual dyadic
partner, and those computed on that same speaker and an artifi-
cial dyadic partner. We observe that the feature distributions of the
former are more peaky, with specific certain clusters of emotions
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Figure 3: Schematic illustrations of the emotion feature clus-
ters computed for all speakers. Each column represents an
emotional cluster centroid, which is a particular distribution
of emotional state activations. There are 10 dimensions that
describe an emotional state, represented by different rows. The
colors represent the odds, in logarithmic (base 10) scale, of a
target expression being present (typically range: [−5,+5]).

co-occurring more often than others. However, in the case of the
latter, this distribution is more flat and uniformly distributed. Note
that while specific results shown in Figure 4 are particular to the
chosen speaker, we observe the aforementioned trends are in gen-
eral for all speakers. In other words, true dyads display specific
patterns of behavioral cooccurrence and synchronicity that are not
observed in artificial dyads, and such a HoC feature is helpful in
understanding and bringing out these differences.

5. CONCLUSIONS AND OUTLOOK
This paper has made an initial attempt at proposing a novel fea-
ture to capture behavioral synchronicity between dyads involved
in a CPS task. This feature, dubbed histograms of cooccurrence,
captures how often different prototypical behavioral states exhib-
ited by one person co-occur with those exhibited by his/her partner
over different temporal lags. We have shown that not only does this
feature bring out the differences between dyads and non-dyads, but
is also interpretable in that it tells us which behavioral states are
most likely to occur in dyads as opposed to non-dyads. In the fu-
ture, we plan to analyze these features further in order to under-
stand specific aspects of behavioral entrainment and convergence
in collaborative interactions, such as a more in-depth analysis of
mirroring phenomena. In addition, we aim to extend this analysis
beyond just emotion features to data/feature streams derived from
multiple channels including video, audio, and text.
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studentsâĂŹ collaboration with an intelligent tutoring system
for elementary-level fractions. In Proceedings of COGSCI,
pages 176–181, 2014.

[5] S. Bilakhia, S. Petridis, and M. Pantic. Audiovisual detection
of behavioural mimicry. In IEEE Humaine Association



Conference on Affective Computing and Intelligent
Interaction, Chicago, 2013.

[6] P. Ekman and E. L. Rosenberg. What the face reveals: Basic
and applied studies of spontaneous expression using the
Facial Action Coding System (FACS). Oxford University
Press, USA, 1997.

[7] R. Jucks, B.-M. Becker, and R. Bromme. Lexical
Entrainment in Written Discourse: Is Experts’ Word Use
Adapted to the Addressee? Discourse Processes,
45(6):497–518, Nov. 2008.

[8] J. L. Lakin, V. E. Jefferis, C. M. Cheng, and T. L. Chartrand.
The chameleon effect as social glue: Evidence for the
evolutionary significance of nonconscious mimicry. Journal
of nonverbal behavior, 27(3):145–162, 2003.

[9] R. Levitan, A. Gravano, L. Willson, S. Benus, J. Hirschberg,
and A. Nenkova. Acoustic-prosodic entrainment and social
behavior. Proceedings of NAACL/HLT 2012, pages 11–19,
2012.

[10] G. Littlewort, J. Whitehill, T. Wu, I. Fasel, M. Frank,
J. Movellan, and M. Bartlett. The computer expression
recognition toolbox (cert). In Automatic Face & Gesture
Recognition and Workshops (FG 2011), 2011 IEEE
International Conference on, pages 298–305. IEEE, 2011.

[11] L. Liu, J. Hao, A. A. von Davier, P. Kyllonen, and
D. Zapata-Rivera. A tough nut to crack: Measuring
collaborative problem solving. Handbook of Research on
Technology Tools for Real-World Skill Development, page
344, 2015.

[12] J. S. Pardo. On phonetic convergence during conversational
interaction. The Journal of the Acoustical Society of
America, 119(4):2382, 2006.

[13] A. Paxton, D. H. Abney, C. T. Kello, and R. Dale. Network
analysis of multimodal, multiscale coordination in dyadic
problem solving. In Proceedings of the 36th Annual Meeting
of the Cognitive Science Society, pages 2735–2740, 2013.

[14] V. Ramanarayanan, C. W. Leong, L. Chen, G. Feng, and
D. Suendermann-Oeft. Evaluating speech, face, emotion and
body movement time-series features for automated
multimodal presentation scoring. In Proceedings of the 2015
ACM on International Conference on Multimodal
Interaction, pages 23–30. ACM, 2015.

[15] V. Ramanarayanan, M. Van Segbroeck, and S. Narayanan.
Directly data-derived articulatory gesture-like
representations retain discriminatory information about
phone categories. Computer Speech and Language,
36:330–346, 2016.

[16] B. Schneider and R. Pea. Real-time mutual gaze perception
enhances collaborative learning and collaboration quality.
International Journal of Computer-Supported Collaborative
Learning, 8(4):375–397, 2013.

[17] A. A. Tawfik, L. Sanchez, and D. Saparova. The effects of
case libraries in supporting collaborative problem-solving in
an online learning environment. Technology, Knowledge and
Learning, 19(3):337–358, 2014.

[18] J. Thomason, H. V. Nguyen, and D. Litman. Prosodic
entraiment and Tutoring Dialogue Success. In H. Lane,
K. Yacef, J. Mostow, and P. Pavlik, editors, Artificial
Intelligence in Education, AIED 2013, pages 750–753.
Springer, 2013.

[19] H. Van hamme. HAC-models: a novel approach to
continuous speech recognition. In Interspeech, 2008.

[20] M. Van Segbroeck and H. Van hamme. Unsupervised

learning of time–frequency patches as a noise-robust
representation of speech. Speech Communication,
51(11):1124–1138, 2009.

[21] D. Zapata-Rivera, T. Jackson, L. Liu, M. Bertling, M. Vezzu,
and I. R. Katz. Assessing science inquiry skills using
trialogues. In Intelligent Tutoring Systems, pages 625–626.
Springer, 2014.


