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The use of facial metrics obtained through remote web-based platforms has shown promising results for at-home assessment of facial
function in multiple neurological and mental disorders. However, an important factor influencing the utility of the obtained metrics is
the variability within and across participant sessions due to position and movement of the head relative to the camera. In this paper,
we investigate two different facial landmark predictors in combination with four different normalization methods with respect to their
effect on the utility of facial metrics obtained through a multimodal assessment platform. We analyzed 38 people with Parkinson’s
disease (pPD) and 22 healthy controls who were asked to complete four interactive sessions, a week apart from each other. We find
that metrics extracted through MediaPipe clearly outperform metrics extracted through OpenCV and Dlib in terms of test-retest
reliability and patient-control discriminability. Furthermore, our results suggest that using the inter-caruncular distance to normalize
all raw visual measurements prior to metric computation is optimal for between-subject analyses, while raw measurements (without
normalization) can also be used for within-subject comparisons.
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1 INTRODUCTION

The SARS-COV-2 pandemic [17] has underscored the need for remote patient monitoring not only to improve ease and
frequency of access to health care but also to enhance our understanding of the patients’ conditions through the rich
data captured in the natural environment of their homes to tailor their treatment [16, 20]. This could improve outcomes
for individual patients while at the same time substantially decreasing healthcare costs. Previous work has shown
promising results for the use of facial metrics as digital biomarkers for a variety of neurological and mental health
conditions, such as Amyotrophic Lateral Sclerosis (ALS) [1], Depression [18], or Parkinson’s Disease (PD) [10]. However,
an important factor influencing the utility of the obtained facial metrics is the variability within and across sessions due
to camera and head movement. Most previous studies (e.g. [7, 14]) tried to reduce the variability by normalizing all
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metrics through the inter-caruncular or interocular distance1 in pixels leading to unitless metrics. However, none of the
studies explained why a particular normalization method was used nor reported results for both normalized as well as
unnormalized metrics to evaluate the influence of normalization on the utility of facial metrics. Furthermore, there
exist, to the best of our knowledge, no studies that focus on the evaluation and comparison of different normalization
approaches for different scenarios, like between-subject and within-subject analyses.
Therefore, in this paper, we take a first step towards filling this gap by investigating four different normalization
methods in combination with two different facial landmark predictors regarding their effect on the utility of facial
metrics obtained through a multimodal assessment platform. More specifically, we utilize the rich multimodal data
collected to answer the following research questions regarding facial metrics normalization:

(1) How does normalization by inter-caruncular distance or iris diameter (with both unitless and millimeter conver-
sions) impact:

(a) test-retest reliability (within subject)?
(b) effect sizes (between subjects)?

(2) How do different facial landmark predictors compare with respect to the influence of normalization on facial
metric utility?

(3) Can iris diameter estimation using MediaPipe FaceMesh be used to compute accurately the inter-caruncular
distance in millimeters?

To this end, 38 people with PD (pPD) and 22 controls were recruited in an ongoing study and were asked to complete
four interactive sessions, a week apart from each other. For each session facial metrics were automatically extracted
in real-time while participants were guided through a battery of standard tasks designed to elicit speech and facial
behaviors by a virtual conversational agent.
The remainder of the paper is structured as follows: Section 2 describes the employed multimodal dialogue system. The
collected data, evaluated normalization methods, and the performed analyses are presented in Sections 3 and 4. Finally,
Section 5 concludes this paper.

2 SYSTEM

The virtual dialog agent, Tina, is powered by the Modality platform, a cloud-based multimodal dialogue system [23]
that conducts on-demand automated screening interviews through a HIPAA-compliant, secure screening portal over
smartphone app or web browser to monitor disease progression and facilitate the development of treatment plans.
During the conversation, Tina engages patients in a mixture of structured speaking exercises and open-ended questions
to elicit speech and facial behaviors, while she can instruct patients to complete standard survey instruments such as
the Parkinson’s disease questionnaire (PDQ-39), at the end of the conversation. During each call, analytics modules
automatically extract a variety of audio (e.g., speaking rate, duration) and facial (e.g., range and speed of movement
of lips and jaw) metrics in real-time and store them in a database together with meta-information of the interaction,
like captured participant responses, call duration, or completion status [21]. This information can be accessed by
clinicians during and after the interaction through an easy-to-use dashboard, which provides a high-level overview of
the interaction and a detailed breakdown of individual interaction turns.

1The inter-caruncular or interocular distance is the distance between the inner canthi of the eyes (see Figure 1 for a visual illustration).
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Table 1. Participant demographics: Age, MoCA scores, and years since diagnosis are presented as: median; mean (standard deviation).

Group Sex Age (years) MoCA score Years since diagnosis
Controls 18F/4M 64.5; 63.14 (10.92) 28; 27.55 (1.88) -
pPD 19F/19M 70; 67.00 (9.19) 27; 26.03 (3.58) 5; 7.58 (6.17)

3 DATA

This study includes data from 60 participants (Table 1) collected between November 2020 and January 2022. All
participants were recruited through the Purdue Motor Speech Lab at Purdue University and informed consent was
obtained from all participants, after explaining the nature of the study and what it involved. Inclusion criteria for
pPD were: between 30 and 85 years of age, a diagnosis of idiopathic PD, availability of a device with a microphone
and a camera, internet access, no hearing and vision loss (self-reported) and fluency in English. Exclusion criteria
were: diagnosis of a neurological disease other than PD; a history of head and neck cancer/surgery, voice disorder,
pulmonary disease, smoking (in the past 5 years), more than moderate cognitive impairment as indicated by a Montreal
Cognitive Assessment (MoCA) [19] score of less than 10. Controls were age- and sex-matched. Participants were asked
to complete four sessions, a week apart from each other. Some participants completed fewer or more than the suggested
number of sessions, resulting in a total of 265 sessions. The conversational callflow required participants to do the
following speaking exercises: (a) sustained vowel (held steady /A/ , up-or-down pitch glide /i/), (b) read speech: speech
intelligibility test (SIT) sentences, sentences that elicited variation in intonational prosody, rainbow passage, (c) story
retells and (d) spontaneous speech (Spont) on any topic of their choice with a few topics suggested on the screen. At the
end of each session, participants completed the Parkinson’s Disease Questionnaire (PDQ-39) [6] and the Communicative
Participation Item Bank short form (CPIB-S) [3].

3.1 Facial Metrics Extraction and Normalization

Facial metrics were calculated for each turn in three steps using two different face detectors and facial landmark
predictors, which have been chosen for this study because they are commonly used, are open-source, and allow
commercial use:

(1) Face detection to determine the (x, y)-coordinates of one or more faces for every input frame
(a) using the face detector in the dnnmodule of OpenCV (https://opencv.org/), which uses a Single Shot Detector

architecture [15].
(b) using MediaPipe Face Detection, which is based on BlazeFace [4].

(2) Facial landmark extraction
(a) using the Dlib facial landmark detector, which uses an ensemble of regression trees [13] to extract 68 facial

landmarks according to MultiPIE [9].
(b) using MediaPipe Face Mesh [12], which uses a residual neural network architecture to extract 478 facial

landmarks2.
(3) Facial metrics calculation, which uses 14 facial landmarks to compute metrics like the speed and acceleration

of articulators (jaw, lower lip), surface area of the mouth, and eyebrow raises. The 14 landmarks used for their

2Originally, MediaPipe Face Mesh only extracted 468 facial landmarks, however, in 2020 it was extended with an attention mechanism by Grishchenko
et al. [8] to extract 10 additional facial landmarks including eight iris landmarks.
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Fig. 1. Illustration of the 14 facial landmarks used to calculate the five representative facial metrics used in this study and the
inter-caruncular distance (shown in red) between the inner canthi of the eyes (RELC and LERC).

calculation are illustrated in Figure 1. For ease of readability, the rest of this paper will focus on the following
five metrics as a representative sample of facial metrics.
• eyebrow_vpos_nt_max: Maximum vertical eyebrow displacement, calculated as the difference between the
vertical positions of RB and NT, and LB and NT.

• eye_open_max: Maximum eye opening, calculated as the Euclidean distances between UREC and LREC as
well as ULEC and LLEC.

• S_max: Maximum total mouth surface calculated as the sum of the two triangles with the vertices RMC, UL,
LL and LMC, UL, LL.

• width_max: Maximum width of the mouth, calculated as the Euclidean distance between RMC and LMC.
• vLL_abs_avg: Average speed of the lower lip (LL).

Four different normalization methods were applied to account for differences in camera distances. Table 2 provides
an overview of the applied normalization methods. For the metrics obtained using OpenCV and Dlib only unitless
normalization using the inter-caruncular distance could be applied (Method I) because no landmarks for the iris were
available, which are required to convert pixels to millimeters. For the metrics obtained using MediaPipe (Methods II
through V), unitless normalization was obtained by either dividing facial metrics in pixels by the inter-caruncular
distance between the participant’s eyes in pixels (Method II) or the mean horizontal iris diameter3 in pixels (Method
IV). Additionally, for the metrics extracted via MediaPipe, normalization was also done by dividing the metrics in
pixels by the mean iris diameter in pixels and multiplying the result by 11.7 mm (Method V) because various studies

3The mean horizontal iris diameter was calculated across both eyes and all frames of a turn.
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Table 2. Overview of the four investigated normalization methods applied to the metrics calculated with landmarks extracted either by
Dlib or by MediaPipe Face Mesh. In the provided equations, 𝛼 and 𝛽 represent the unnormalized and normalized metrics, respectively.
For area-based metrics, expressed in squared pixels, all terms on the right side of the equations were raised to the power of 2.

Face detector Landmarks predictor Distance Unit Equation

I OpenCV SSD
face detector [15]

Dlib facial
landmark detector [13] Inter-caruncular

distance (ICD)

px 𝛽 = 𝛼
𝐼𝐶𝐷

II

MediaPipe
Face Detection [4]

MediaPipe
Face Mesh [12]

III mm 𝛽 = 𝛼
𝐼𝐶𝐷

∗ ( 𝐼𝐶𝐷
𝐼𝐷

∗ 11.7mm)

IV
Iris diameter (ID)

px 𝛽 = 𝛼
𝐼𝐷

V mm 𝛽 = 𝛼
𝐼𝐷

∗ 11.7mm

have shown that the average horizontal iris diameter of the human eye is about 11.7 mm across a wide swathe of the
population [2, 5, 11, 22]. Finally, normalization was done by dividing facial metrics in pixels by the inter-caruncular
distance in pixels and multiplying it with the inter-caruncular distance in millimeters (Method III), which was in turn
obtained by dividing the inter-caruncular distance in pixels by the iris diameter in pixels and multiplying it with the
iris diameter in mm.

4 ANALYSES

4.1 Effect of normalization

This section compares the effect of the different normalization methods described in Section 3.1 regarding their influence
on the test-retest reliability of facial metrics and their effect sizes. Figure 2 shows within-subject correlations between
sessions for five facial metrics. The results show that metrics obtained via OpenCV and Dlib have lower test-retest
reliability than metrics obtained using MediaPipe Face Detection and Media Pipe Face Mesh. Similarly, we find that the
effect sizes for metrics obtained using OpenCV and Dlib are lower than for the metrics obtained via MediaPipe (Figure 3).
Also, MediaPipe metrics normalized using the inter-caruncular distance outperform all other normalization methods,
including no normalization, in terms of higher effect sizes, suggesting that this normalization method is optimal for
between subject comparisons. The test-retest reliability of MediaPipe metrics normalized using the inter-caruncular
distance is also higher than all other normalization methods. Counterintuitively, we found that the raw values without
normalization also had high test-retest reliability for this dataset, in some cases higher than other normalization methods.
While this could be due to the nature of our data collection, where a researcher checked that all participants adhered
and compliance to task instructions, we cannot claim that this observation might generalize to all datasets. Important
to note is also that only for two of the metrics the correlations are statistically significant, while for the other three
metrics the correlations for most normalization methods are not significant (Figure 2). Furthermore, when looking at
patients and controls separately, the latter have a higher test-retest reliability than the former and all normalization
methods involving MediaPipe show statistically significant correlations for controls, while for patients less correlations
are statistically significant than for all participants. It is also interesting that, for both test-retest reliability and effect
sizes, millimeter metrics and unit-less metrics normalized using the iris diameter are always the same (though worse
than the inter-caruncular distance), indicating that the ground truth approximation of the iris diameter in millimeters,
i.e. 11.7 mm, is relatively accurate so that the results mostly depend on the accurateness of the predicted iris diameter.
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Fig. 2. Overview of test-retest reliability measured as the average Pearson’s correlation coefficient across all pairs of sessions for five
facial metrics that represent a representative sample of the set of extracted facial metrics with r >= 0.5 for both predictors and all four
normalization methods (see Table 2). Statistically significant correlations (p < 0.05) are marked with a star.

Fig. 3. Effect sizes for five facial metrics that represent a representative sample of the set of extracted facial metrics for both predictors
and all four normalization methods (see Table 2). Each metric shows a statistically significant difference between controls and pPD at
𝛼 = 0.05.
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Table 3. Comparison between the inter-caruncular distance in mm obtained via MediaPipe and the manually obtained ground truth.

MAE absolute error std mean relative error relative error std RMSE
3.59 mm 3.24 mm 10.01% 8.10% 4.84 mm

4.2 Accuracy of iris diameter estimation

Providing metrics in millimeters instead of pixels or without unit increases their interpretability for researchers and
clinicians. However, to be useful the conversion must be accurate. Therefore, participants were asked at the beginning
of each session to hold a ruler to their forehead. Afterwards, the inter-caruncular distance in millimeters was manually
determined by looking at one of the corresponding video frames. These ground truth values were then compared to the
millimeter values of the inter-caruncular distance calculated using the facial landmarks obtained via MediaPipe Face
Mesh. The results in Table 3 show that the error between the predicted iris diameter and the ground truth is relatively
high with a RMSE of 4.84 mm and a relative error of 10.01%. However, the results should be taken with a grain of salt
because the ground truth values were manually obtained through visual inspection of the recorded frames and for some
sessions the available frames were relatively blurry. This hypothesis is supported by the large standard deviation of 3.24
mm (8.10%), which illustrates that the accuracy of the estimated iris diameter varies strongly across sessions.

5 DISCUSSION

This study illustrates the benefits for between-subjects analyses of facial metrics normalization in comparison to the
use of raw values. We also found that the accuracy of facial landmarks used to calculate facial metrics has a stronger
influence on the utility of the metrics than any of the investigated normalization methods for both between- and
within-subject analyses. More specifically, the obtained results show that MediaPipe Face Mesh clearly outperforms
OpenCV and Dlib for all metrics and independent of the applied normalization method suggesting a higher facial
landmark prediction accuracy. Normalizing Mediapipe metrics using inter-caruncular distance proved to be the best
normalization method for between-subjects analysis. While it was also the best normalization method for within-subject
analysis, the test-retest reliability values suggested that in our specific dataset, raw values performed as well or better.
This could be used when participants adhere to instructions very well and always sit in the same position relative to
the camera, as in our case. However, we cannot claim that this result generalizes to all datasets, even when there are
limited controls on task performance and compliance. We will examine the generalizability of this observation in future
work. Overall, the results confirm that normalization through the inter-caruncular distance in pixels, as used in many
previous studies without explanation (see Section 1), provides a benefit for between-subject analyses. Furthermore,
the results also show that metrics can be converted to millimeters by utilizing MediaPipe Face Mesh for iris diameter
estimation with an acceptably small reduction in effect sizes and test-retest reliability, when human interpretation of
metrics, e.g. by a clinician, is desired. In future work, we will compare the metrics normalization methods evaluated in
this study with facial landmarks normalization, i.e. the the facial landmarks would be normalized before the metrics are
computed, which could also be used for non-pixel based metrics like facial action units.
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