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Abstract

In this study, we describe the responsiveness of timing-related
measures extracted from read speech in persons with ALS
(pALS) collected via a remote patient monitoring platform in
an effort to quantify how long it takes to detect a clinically-
meaningful change associated with disease progression. We
found that the timing alignment of pALS speech relative to a
canonical elicitation of the same prompt is the most responsive
measure, of the ones considered in this study, at detecting such
change in both pALS with bulbar (n = 35) and non-bulbar onset
(n = 94). We further evaluated the sensitivity of speech metrics
in tracking disease progression in pALS while their ALSFRS-
R speech score remained unchanged at 3 out of a total possi-
ble score of 4. We observed that timing-related speech metrics
showed significant longitudinal changes even after accounting
for learning effects. The findings of this study have the potential
to inform disease prognosis and functional outcomes of clinical
trials.

Index Terms: speech biomarkers, amyotrophic lateral sclero-
sis, remote patient monitoring

1. Introduction

Amyotrophic Lateral Sclerosis (ALS) is a progressive motor
neuron disease with an estimated global prevalence of 4.42 per
100,000 persons [1]. The rapid degeneration and death of motor
neurons lead to muscular atrophy, loss of voluntary motor con-
trol in persons with ALS (pALS) and a median survival of 3 to
5 years [2] after disease onset. Up to 30% of pALS present with
bulbar onset of ALS, characterised by a rapid loss of speech and
swallowing functions [3], while the rest present with non-bulbar
onset characterised by muscular atrophy in the limbs and the
trunk [4]. A vast majority of non-bulbar onset pALS eventually
exhibit bulbar symptoms in the course of their disease progres-
sion [2]. Due to this heterogeneity in disease onset and progres-
sion, it is important to identify efficacious bulbar biomarkers to
improve the predictive modelling of disease progression.

The current clinical gold standard to track disease pro-
gression in ALS is the ALS Functional Rating Scale - Re-
vised (ALSFRS-R) [5], a questionnaire comprising 12 ques-
tions across four functional domains impacted by ALS [6]: bul-
bar, fine motor, gross motor and respiratory. However, there
is evidence that the ALSFRS-R scale may track disease pro-
gression in a non-linear manner and may lack sensitivity in the
early stages of bulbar disease onset [7, 8]. On the other hand,
objective speech measures have been shown to be very power-
ful in early detection of bulbar symptoms [3, 8, 9, 10, 11, 12]
and the progression of bulbar decline in pALS [13, 14, 15].
Specifically, Eshghi et al. [15] demonstrated that speaking rate
and speech intelligibility can predict speech loss based on pre-
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defined thresholds and that these objective speech measures
are more responsive to functional decline than patient-reported
ALSFRS-R scores. Stegmann et al. [14] demonstrated that dis-
ease progression in bulbar onset and non-bulbar onset pALS
can be predicted using speaking rate and articulatory preci-
sion using data collected remotely via a mobile application.
Speaking rate has been consistently found to be an important
biomarker for early diagnosis and stratification in both these
studies and other studies, along with other timing-related mea-
sures like percentage pause time, speaking duration and oth-
ers [10, 11, 16, 17]. Thus, timing-related speech biomarkers
have the potential to track functional outcomes and slowing
of bulbar decline in the context of clinical interventional tri-
als targeting neurodegenerative disorders. To establish the ef-
ficacy of timing-related speech biomarkers in tracking bulbar
decline, it is important to consider what constitutes a minimal
clinically-important difference (MCID) [18, 19] instead of pre-
defined thresholds that may vary by clinical phenotypes. For
these speech biomarkers to be considered clinically useful, it is
important that they are sensitive in detecting bulbar deteriora-
tion, which could be well before corresponding changes are ob-
served in the relevant ALSFRS-R functional scores. To address
the need for improved biomarkers of bulbar disease progression
in ALS, we explored the responsiveness, sensitivity and clinical
utility of four timing-related speech metrics by formulating the
following research questions:

1. Is the rate of change in timing-related speech biomarkers dif-
ferent for bulbar and non-bulbar onset pALS? If so, can we
quantify how different the rates are?

2. How many weeks does it take to detect a clinically mean-

ingful change from disease onset using these metrics in both
cohorts of pALS?

3. Can these metrics detect speech deterioration during inter-

vals of time when patients report no speech changes (i.e., on
the ALSFRS-R)?

2. Data

The study protocol was granted exempt status by an external
Institutional Review Board'. Participants were recruited by Ev-
erythingALS and the Peter Cohen Foundation®. Data was col-
lected in an ongoing study from 129 pALS (64 female, mean
age = standard deviation = 62.63 £ 7.98 years, Bulbar onset: n
= 35, Non-Bulbar onset: n = 94) and 135 age and sex-matched
controls (71 female, mean age + standard deviation = 62.75
+ 8.06 years) between 2020-11-03 and 2023-02-07. For age
matching, a tolerance threshold of -3 was set. Audiovisual data
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from all participants was collected using the Modality platform,
a cloud-based multimodal dialogue system in which partici-
pants perform standard motor speech tasks in a structured con-
versation with a virtual agent, Tina. Participants also filled out
the ALSFRS-R survey after completing the standard battery of
speech tasks. A total number of 2362 pALS sessions (506 bul-
bar onset and 1856 non-bulbar onset) and 3044 control sessions
were considered in this analysis. On average, pALS completed
23 (& 20) sessions, and controls completed 22 (+ 18) sessions.

3. Metrics

We focus on the Bamboo passage, a standardised 99-word
reading passage designed to examine pausing behaviour by
having voiced consonants at word and phrase boundaries.
Timing-related measures during the reading of this passage
are useful in detecting motor speech abnormalities in readers
[10, 16, 17]. During every participant session, metrics were ex-
tracted automatically after segmentation of audio data collected
at a sampling rate of 48kHz. We selected four timing-related
metrics described below:

1. Speaking duration (seconds): The total amount of time taken
to read the Bamboo passage in seconds.

2. Speaking rate (words per minute): The total number of
words in the passage (99) divided by the time taken to read
the Bamboo passage [20] .

3. Percentage pause time (PPT; %): The proportion of the total
duration of all pauses to the total duration of the utterance.

4. Canonical Timing Alignment (CTA; %): A number between
0% (non-alignment) and 100% (perfect alignment) as
measured by the normalised inverse Levenstein edit distance
between words and silence boundaries. The participant’s
predicted word-level timing information, derived using the
Montreal Forced Aligner [21], is compared to the expected
production by Tina [22].

4. Methods

4.1. Clinically-meaningful change

To define a clinically meaningful change, we calculated the
minimal clinically-important difference (MCID) [18, 19] for the
four metrics described in this paper for a corresponding one-
point change on the ALSFRS-R speech question where partici-
pants are asked to rate their speech on the following scale with
scores in parentheses:

* Normal speech processes (4)

¢ Detectable speech disturbance (3)

* Intelligible with repeating (2)

* Speech combined with nonvocal communication (1)

¢ Loss of useful speech (0)

The MCID is the smallest domain-specific change that is
thought to be clinically relevant [23]. It can be quantified as
a threshold for a change corresponding to clinical improvement
or deterioration [24] and is tied to an external anchor which is
considered to be a clinical gold standard, the ALSFRS-R speech
question in this case. The point representing maximum sensitiv-
ity and specificity (top left corner) on a receiver operating char-
acteristic (ROC) curve of a simple binary classifier is the opti-
mal cutpoint corresponding to the MCID value. MCID calcula-
tion was performed using the rpy2 package in Python along
with the pROC [25], ROCR [26] and OptimalCutpoints
[27] packages in R [28]. The classes being discriminated in the
classifier were pALS who exhibited a one-point change in their

ALSFRS-R speech score and those who did not show a change
in their ALSFRS-R speech score.

4.2. Longitudinal analysis

To evaluate the responsiveness and sensitivity of the metrics
on a longitudinal basis, we used growth curve models (GCMs)
[29] that provide a linear fit for a non-linear mixed effects
model to estimate the trajectory of a metric over time with
random slopes and intercepts for each participant [14]. The
advantage of growth curve models is that they produce
estimates of smoothed trajectories of change over time by
using observed repeated measures of each individual, making
it the ideal statistical method for the dataset considered in
this paper. The assumption is that a latent growth process
(decline of speech functions) is responsible for the change in
observed measures. GCM fitting was performed in R. GCM
curves for distinct cohorts can help identify differences in the
longitudinal trajectory of measures in the two cohorts. In this
paper’s growth curve models, more than 90% of participants
had at least 3 repeated measures, thus minimising any impact
of variability in the number of sessions per participant [30].

4.2.1. Responsiveness

For the responsiveness analysis, the two cohorts chosen
for growth curve modelling were sessions from pALS with
bulbar onset and those from pALS with non-bulbar onset.
Responsiveness was evaluated in two ways: (i) the time taken
in weeks to detect deterioration greater than the standard error
of the mean value for the cohort (statistical utility) and (ii) the
time taken in weeks to detect deterioration greater than the
MCID value (clinical utility).

4.2.2. Sensitivity

For sensitivity analysis, the two cohorts were sessions from
healthy controls (where the ALSFRS-R speech score remained
unchanged at 4: normal speech processes) and all contiguous
PALS sessions with a speech score of 3. We decided to look
at pALS sessions with a speech score of 3 because these
PALS were deemed to exhibit bulbar impairment (albeit per
self-perception) but still had speech that was intact enough for
objective analysis. A metric was determined to be sensitive
if the slope of the GCM for pALS with a steady speech score
of 3 varied as compared to the slope of participants from the
control cohort with a steady speech score of 4. Longitudinal
data may be confounded by the presence of learning effects due
to the repetition of the same tasks over time. In the case of the
Bamboo passage, familiarity with the words in the passage may
lead to an increased speaking rate. The advantage of comparing
the trajectory of metrics in ’clinically-stable’ pALS with that in
controls is that it will demonstrate a difference in slopes over
any learning effects (assuming the learning effects are equal
across cohorts).

5. Results

All four timing-related metrics showed differences in slopes be-
tween bulbar onset and non-bulbar onset pALS with the bulbar
onset cohort exhibiting a steeper slope or a more rapid deterio-
ration in speech (see Figure 1). Details of the slopes per cohort
and responsiveness values can be found in Table 1. Speaking
rate was found to be the measure with the most responsive sta-
tistical utility (2.97 weeks in pALS with bulbar onset). How-
ever, if both statistical and clinical utility are taken into account,
CTA was found to be the most responsive measure in both co-
horts. CTA shows statistical and clinical utility in detecting
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(a) Speaking duration (p = 0.0007; equations:

bulbar onset speaking duration = 0.2358 * number of weeks + 34.97;
non-bulbar onset speaking duration = 0.0491 * number of weeks +
33.76)
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(c) Percentage Pause Time (p = 0.0070; equations:
bulbar onset PPT = 0.0568 * number of weeks + 13.48;
non-bulbar onset PPT = 0.008 * number of weeks + 15.49)
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(b) Speaking rate (p = 0.0159; equations:
bulbar onset speaking rate = -0.2373 * number of weeks + 136.14;
non-bulbar onset speaking rate = -0.0344 * number of weeks + 164.08)
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(d) Canonical Timing Alignment (p = 0.0344; equations:
bulbar onset CTA = -0.1712 * number of weeks + 71.31;
non-bulbar onset CTA = -0.0793 * number of weeks + 82.64)

Figure 1: Growth curve models showing steeper rates of change for timing-related metrics in bulbar onset pALS (blue) as compared
to non-bulbar onset pALS (red). Note: The cohort-specific lines in the growth curve model figures are not linear regression fits. They
represent the average intercept and slope across all participants in the respective cohorts. Each data point represents a session.

bulbar onset pALS within less than 4 weeks and in non-bulbar
onset pALS within 9 weeks. Although speaking rate and PPT
show differences in the longitudinal trajectory between bulbar
onset and non-bulbar onset pALS, the time taken to observe a
clinical change, especially in non-bulbar onset pALS, may be
too long to be of clinical utility for some interventional trials.

All four metrics were also sensitive enough to show a lon-
gitudinal change before any change in the ALSFRS-R speech
score of patients from 3 (see Table 2). Since clinical deteriora-
tion of speech in controls is not expected, any changes in met-
rics can be attributed to familiarisation with the task or learning
effects. A learning effect in controls can be observed through
the negative slope for speaking duration and PPT and a pos-
itive slope for speaking rate. Note that the slope for CTA is
negative in controls because an increase in speaking rate would
reduce the CTA value because the elicitation will be faster than
the canonical elicitation of the reading passage. However, the
longitudinal trajectory of CTA in controls had a slope that was
not statistically different from 0, i.e. negligible. Differences be-

tween controls and pALS were observed despite the presence of
these learning effects.

6. Discussion and Conclusions

In this work, we investigated whether the longitudinal trajec-
tories of timing-related speech biomarkers extracted from read
speech can distinguish between pALS with bulbar onset and
those with non-bulbar onset. All four biomarkers — speaking
duration, speaking rate, PPT and CTA — showed a steeper de-
cline in pALS with bulbar onset associated with speech deterio-
ration. Of these four metrics, CTA was the most responsive, i.e.
per the growth curve models, it took the shortest time to detect
a change that was statistically and clinically relevant. Previous
studies have demonstrated the utility of speaking rate in dis-
tinguishing between longitudinal changes in bulbar onset and
non-bulbar onset cohorts [14, 15]. In this study, since speaking
rate was calculated as the total speaking duration divided by the
total number of words, one would expect to see similar trajecto-
ries for both metrics. However, the assumption here is that ev-



Table 1: Responsiveness of metrics. Bulbar onset: n = 35 (5006 sessions), Non-Bulbar onset: n = 94 (1856 sessions)

Metric MCID Onset Slope + standard error  Standard error (SE) Weeks to detect Weeks to detect
of slope per week of the mean change > SE change > MCID
Speaking duration 1.91 Bulbar 0.2358 4+ 0.055 0.70 297 8.10
(seconds) Non-Bulbar 0.0491 4+ 0.027 0.41 8.35 38.90
Speaking rate -6.57  Bulbar -0.2373 £ 0.0841 1.33 5.60 27.68
(words per minute) Non-Bulbar -0.0344 + 0.04 1.073 31.19 190.99
PPT 392  Bulbar 0.0568 + 0.0181 0.32 5.63 69.01
(% points) Non-Bulbar 0.008 + 0.0087 0.14 17.50 490.00
CTA -0.66  Bulbar -0.1712 £ 0.0403 0.53 3.10 3.86
(% points) Non-Bulbar -0.0793 + 0.0206 0.33 4.16 8.32
Table 2: Sensitivity of metrics. 38 pALS (684 sessions)
Metric p-value of difference  Cohort  Intercept + standard error Slope + standard error
Speaking duration <0.0001 Controls 34.66 £ 1.03 -0.0431 £ 0.0133
(seconds) pALS 4422 +2.32 0.1417 £ 0.0308
Speaking rate <0.0001 Controls 173.90 £+ 2.72 0.2507 + 0.0337
(words per minute) pALS 136.15 + 6.12 -0.2474 £ 0.0778
PPT 0.0112 Controls 14.94 £+ 0.57 -0.0148 £ 0.0079
(% points) pALS 17.06 &+ 1.30 0.0313 + 0.0182
CTA <0.0001 Controls 78.44 £+ 0.96 -0.0076 £ 0.0133
(% points) pALS 68.65 +2.17 -0.1628 £ 0.0294

ery participant finished reading the entire passage (99 words).
Since the trajectories are slightly different, it would be fair to
assume that some participants did not read the whole passage.
Therefore, between the two metrics, speaking duration is proba-
bly a stronger measure because it does not assume task comple-
tion. In future work, automatic speech recognition will be used
to ensure task completion. Relatedly, we also looked at differ-
ences in articulation rate (total duration of reading excluding
pauses divided by total number of words) between the two co-
horts. While pALS with bulbar onset and those with non-bulbar
onset had statistically different intercepts, we did not observe
differences in the slopes of the longitudinal trajectories of the
metric. This is indicative of cohort-specific differences in paus-
ing patterns rather than changes in articulation, thus contribut-
ing to differences in PPT and CTA over time. We also aimed
to investigate whether the four timing-related metrics show a
statistically significant change over time while the clinical gold
standard indicated no clinical change in bulbar-impaired pALS.
For this, we chose pALS who perceived their speech to be im-
paired, that is a score of 3 on the ALSFRS-R speech question.
We hypothesise that pALS with a score of 4 would probably
be the ones without any bulbar or speech motor impairment (at
least at the time of measurement), and would show a ceiling ef-
fect for most metrics, which would be unsuitable for studying
their sensitivity. In fact, when we looked at pALS with a steady
speech score of 4, their longitudinal trajectory was not statisti-
cally different from controls. Unsurprisingly, controls showed
a learning effect over time for speaking rate and speaking dura-
tion (a slope statistically different from 0) as they got more fa-
miliar with the Bamboo passage but not for PPT and CTA, indi-
cating that pausing patterns in controls did not change over time.
However, pALS displayed metric trajectories that were differ-
ent from controls even when learning effects were present in
controls indicating a high sensitivity for these metrics to detect
speech deterioration faster than the subjective clinical survey in-
strument. One limitation here is the assumption that pALS and
controls would exhibit similar rates of learning.

The analyses performed in this paper inherently assumed

linearity of ALS disease progression. While this was done for
simplicity and ease of interpretation and is still useful, we know
that this assumption is not accurate. Research has shown that
ALS progression is frequently nonlinear, with periods of sta-
ble disease preceded or followed by rapid decline [31]. Future
work will focus on improving modelling methods to better cap-
ture trajectories and the variability in different clusters of pa-
tients that may share similar disease progression patterns. These
timing-related metrics were calculated using data collected re-
motely and thus have the potential to be included in large in-
terventional trials with geographically-distributed populations.
Since CTA requires a maximum time of 8.32 weeks to detect
clinical changes in both bulbar and non-bulbar onset pALS, it
provides an opportunity to track speech change and even its
slowing down in a relatively short period of time. To our knowl-
edge, this is the first work to compare both the statistical and
the clinical responsiveness of timing-related metrics in bulbar
and non-bulbar onset ALS and to report changes in more finely
grained objective metrics before any changes in the current clin-
ical gold-standard survey instrument (ALSFRS-R) are reported.
In conclusion, the longitudinal trajectories of timing-related
speech biomarkers associated with the reading of a passage are
useful in distinguishing between persons with bulbar onset ALS
and non-bulbar onset ALS. These trajectories help determine
how many weeks it takes to detect clinically-important speech
deterioration. Among the four biomarkers tested, the timing
alignment of read speech as compared to a canonical reading
of the passage was the most responsive to bulbar decline. Ad-
ditionally, these biomarkers are sensitive enough to detect a
change before any clinical change is detected by the prevalent
gold-standard survey instrument, the ALSFRS-R scale.
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