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in a nutshell
 our goal is to devise an articulatory 
representation that would allow us to 
computationally analyze real-time speech 
production data
 we investigate deformable shape model 
and linear discriminant analysis based 
representations
 we validate alternative representations by 
HMM-based articulatory recognition  

 we want to model the (co-)variation of the 
points on the vocal tract contour
 each vocal tract corresponds to a point in an 
M-dimensional space and all such points form 
a cloud in the “Allowable Shape Domain” [3] 
 it is assumed that this cloud is approximately 
ellipsoidal and its center and major axes are 
estimated using principal component analysis
 the eigenvectors of the covariance matrix 
corresponding to the largest eigenvalues 
describe the longest axis of the ellipsoid
 26 components describe more than 95% of 
the variance 

 

 our goal is to obtain a vocal tract representation that would 
preserve as much of the discriminative information among classes of 
shapes (one class per phoneme) as possible
 

assuming unimodal Gaussian distributions of the points for each 
class the optimal projection matrix can be found via linear 
discriminant analysis, by maximizing the ratio of between-class to 
within-class scatter 
 
 

 40 LDA / 25 PCA based 
features  
 results using image intensity 
based discrete cosine transform 
features are also shown (100 
features)
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training
 the models were initialized using the timed phonetic transcriptions of the training sequences
 4-component Gaussian mixture models as observation probability distributions
 each pair of phonemes whose articulation presumably only varies in terms of voicing are considered to be in 
the same class, e.g., /z/ and /s/ or /t/ and /d/
 training was performed using the Hidden Markov Model toolkit (HTK)
 finally, the articulatory models are allowed to be asynchronously aligned with the corresponding acoustics 
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