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Abstract Optimal voice activity detection (VAD) settings, used to automatically
detect the end of speaker turns in an automated spoken dialog system, differ for
pathological and non-pathological speech. However, VAD settings may be further
conditioned on the cognitive or neurological condition of the user, especially where
patients are severely affected. Here, we present preliminary investigations into opti-
mal VAD parameter setting bounds, as measured with the NIST detection cost func-
tion (DCF), for pathological speech collected from severe presentations of four con-
ditions: amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), schizophre-
nia, and depression. We found, via simulation experiments, that the amount of non-
speech time to wait before deciding that the participant has finished their speaking
turn was especially discriminating. A 2.6 second wait time was found to be op-
timal for pathological conditions like ALS and PD that exhibit dysarthric/speech
motor symptoms; whereas, 4.0-4.5 seconds was best for those with associated men-
tal health symptoms. Our results suggest that optimizing voice activity detection
systems for pathological cohorts in this manner can greatly enhance user experience
by reducing interruptions while minimizing dialog system response time.

1 Introduction

Dialog systems offer the potential to improve availability, frequency, and quality
of patient care for neurological and mental health conditions because such technol-
ogy can be used to drive automated patient assessments that previously required
face-to-face sessions with a clinician (1; 2; 3). As most dialog systems have been
developed for non-disordered adult speech, their performance can decrease substan-
tially when confronted with pathological speech, a symptom of conditions such as
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Parkinson’s, Alzheimer’s, multiple sclerosis (MS), or Amyotrophic Lateral Sclero-
sis (ALS) (4). One component that is particularly crucial for seamless dialog in-
teraction is voice activity detection (VAD); however, the special characteristics of
pathological speech, like poor articulation, disfluencies, variable intra-word pause
lengths, atypical acoustic, motoric and emotional properties, etc., make VAD a much
more challenging problem than when applied to healthy speech (5; 6).

Furthermore, to better personalize such dialog-based digital health monitoring
solutions, VAD detection algorithms must account for the fact that patients suffer-
ing from different neurological and mental health conditions exhibit a variety of
different pathological speech characteristics (7). For instance, people with ALS ex-
hibit characteristic hoarseness in their voice (8), atypical spectral acoustic features
(9), and longer and more variable pause durations (10). Atypical prosody and du-
ration have also been demonstrated as markers of Parkinson’s disease (11). On the
other hand, patients suffering from mental health issues, such as those at a high risk
of clinical depression and suicidality, display decreased verbal activity productivity,
diminished prosodic variability and/or monotonous, “lifeless” sounding speech (12).
Schizophrenic patients can have deficits in attention, memory, and executive func-
tioning; confused and disordered thinking and speech; trouble with logical thinking;
and sometimes bizarre behavior or abnormal movements (13).

To extend the utility of such VAD (and therefore dialog) systems to be truly
generalizable across neurological and mental health conditions, and deal with
speech patterns across multiple conditions—especially where patients are severely
affected—we need a better understanding of optimal VAD parameters for these pa-
tients in particular. In previous work, we have shown that optimal VAD parameters
are different for participants with ALS vs healthy controls, especially the amount of
non-speech time to wait before considering a turn complete (14). We extend those
results here with a preliminary investigation into how optimal VAD parameter set-
tings vary across severe presentations of four different disorders: amyotrophic lat-
eral sclerosis (ALS), Parkinson’s disease, schizophrenia, and depression. To answer
this question, we first simulate the performance of a VAD system that is optimized
across severe presentations of four pathological speech cohorts: ALS, Parkinson’s
disease, schizophrenia, and depression. We then investigate the VAD performance
within each cohort, particularly with respect to the interruption rate and NIST detec-
tion cost function (DCF), and examine how parameter tuning can ameliorate perfor-
mance. To our knowledge, this is the first investigation of pathology-specific VAD
settings for digital health dialog agents in the literature.

2 System

We use NEMSI (NEurological and Mental health Screening Instrument), a cloud-
based multimodal dialog system that conducts on-demand automated screening in-
terviews for the assessment or monitoring of various neurological and mental health
conditions for the VAD experiments described in this paper (3). Dialog turn man-
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agement in NEMSI is managed in part by voice activity detection (VAD) using the
CMU Sphinx open source speech recognition toolkit.1 The algorithm uses a two-
step process to identify spans of speech and non-speech in a stream of audio. See
(14) for more details.

There are six VAD parameters whose values can be configured to optimize per-
formance. These are: (i) minSignal, the minimum required energy level (dB) for a
speech frame; (ii) adjustment, the factor by which the background level estimation
is increased with each successful speech frame; (iii) threshold, the energy level of
the required difference between the background noise and average signal level esti-
mations (dB); (iv) startSpeech, time in milliseconds of speech required to trigger
the start of a speech event, (v) endSilence, time in milliseconds of non-speech
required to designate the end of a speech turn, and (vi) initialSilence, time in
milliseconds of non-speech to wait for detection of user speech before considering
the user input devoid of speech.

3 Data

The experiments described in this paper analyze 697 utterances from 40 complete
dialog interactions, each from unique participants, selected from 4 different medi-
cal conditions; 10 sessions from each domain. The number of turns in each session
ranged from 9 to 36 (mean=17.4; SD=9.1) and turn duration ranged from 7.5s to
151.2s (mean=29.1s; SD=23.7s) depending on the task. In total, our corpus com-
prises 5.6 hours of user audio2. Conversations were selected based on severity of
disease, as outlined below.

3.1 Parkinson’s Disease

Demographic and diagnosis information was used to select conversations for the
Parkinson’s cohort. Parkinson’s patients were recruited and consented through the
Purdue Motor Speech Lab as part of an ongoing collaboration with Purdue Univer-
sity (15), approved by Purdue’s Institutional Review Board. In addition to having an
official diagnosis, each user completed a Communicative Participation Item Bank
(CPIB) survey (16). The CPIB asks patients to rate how much their condition in-
terferes with participation in ten everyday verbal communication situations such as
talking to people they know, ordering a meal in a restaurant, having a conversation

1 https://cmusphinx.github.io/
2 Note that the sample size here is relatively smaller than typical studies that aim to generalize
results to a population. However, we argue that our results are informative and useful nonetheless,
given that we are looking at extreme cases, i.e., severe presentations of each disorder condition.
Also, for various reasons including reduced patient ability and increased patient burden, it is often
relatively challenging to collect data in large amounts from more severely progressed patients.
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in a small group, etc. A summary score is obtained by assigning each answer a point
value: “Not at all”=0, “A little”=1, “Quite a bit”=2, “Very much”=3. According to
this system, a CPIB score of 30 indicates severely affected speech.

A complete session was chosen at random for five male and five female patients
with the highest CPIB scores. Selected CPIB scores ranged from 15-30. The total
number of patient turns in this cohort was 327. Each participant turn is a response
to one of eight tasks: sustained vowel phonation; read short and long sentences,
questions, and paragraphs; and short and long spontaneous speech.

3.2 Amyotrophic Lateral Sclerosis (ALS)

Data from ALS patients comes from a ongoing collaborative IRB-approved study
with EverythingALS and the Peter Cohen Foundation3 (17). Demographic and diag-
nosis information was used to select conversations for the ALS cohort. In addition
to having an official diagnosis, each user completed an ALS-FRS-R survey (18).
Though the ALS-FRS-R survey covers many topics related to possible ALS symp-
toms, the first question specifically asks the patient to rate their speech capabilities
according to the following scale: “Normal speech processes”=4, “Detectable speech
disturbance”=3, “Intelligible with repeating”=2, “Speech combined with nonvocal
communication”=1, “Loss of useful speech”=0.

A complete session was chosen at random for the five participants of each sex
with the lowest ALS-FRS-R Q1 scores. Selected ALS-FRS-R Q1 scores ranged
from 0-2. The total number of patient turns in this cohort was 117. Each participant
turn is a response to one of eight tasks: sustained vowel phonation, counting, and di-
adochokinetic syllables4; read short sentences and a longer paragraph; spontaneous
speech; and description of a picture.

3.3 Schizophrenia

Demographic and diagnosis information was used to select conversations for the
Schizophrenia cohort. Data collection was approved and done in collaboration with
the Nathan S. Kline Institute for Psychiatric Research, and written informed consent
was obtained from all participants at the time of screening after explaining details of
the study. In addition to having an official diagnosis, each user also has a clinician-
assessed Brief Negative Symptom Scale (BNSS) score (19). BNSS is an assessment
of negative symptoms in patients with schizophrenia on the following sub-scales:
anhedonia (0–18), distress (0-6), asociality (0–12), avolition (0–12), blunted affect

3 https://www.everythingals.org/research
4 The diadochokinetic task, usually abbreviated DDK, is one in which patients are asked to produce
repeated syllables at a maximum rate of production.

https://www.everythingals.org/research
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(0-18), and alogia (0-12). The BNSS score can range from 0 (no negative symptoms)
to 78 (maximum negative symptoms on all subscales).

As before, a session was chosen at random for six male and four female par-
ticipants5 with the highest total BNSS scores. Selected BNSS scores ranged from
33-61. The total number of patient turns in this cohort was 130. Each participant turn
is a response to one of seven tasks: sustained vowel phonation and diadochokinetic
syllables; read short sentences and a longer paragraph; short and long spontaneous
speech; and description of a picture.

3.4 Depression

Data from patients in this cohort were obtained in partnership with Clarigent Health
via a study in which all patients had a clinical diagnosis of depression. At the time
of this writing, we did not have a sex-balanced cohort for the clinical depression
cohort. In total, this cohort comprises 123 turns from 1 male and 9 female patients.
Each participant turn is a response to one of 7 tasks: 1 read short sentence and 6
open-ended questions asking about how the user is feeling and their thoughts about
anger, emotional pain, fear, hope, and secrets. Recruitment for the study was done
via ResearchMatch, a national health volunteer registry that was created by several
academic institutions and supported by the U.S. National Institutes of Health as part
of the Clinical Translational Science Award program.

4 Methods

4.1 VAD Performance Measures

We employed the standard NIST Detection Cost Function (DCF) (20) to measure
how well the CMU Sphinx VAD predictions were, given a set of values for the con-
figurable parameters described in Section 2. The DCF score is a weighted penalty
of the proportion of false positive and false negative time, when compared to a hand
annotation of actual speech in an audio stream. Since ignoring true speech is usually
most detrimental to a spoken dialog system, DCF traditionally penalizes false nega-
tives more than false positives. Refer to Figure 1 for a visual aid in our discussion of
the four possible outcomes of a VAD prediction when compared to a reference hand
annotation. True negative time (T N) is the time when the VAD algorithm predicted
no speech and the user was not speaking. True positive time (T P) is the time when
the VAD algorithm predicted speech and the user was speaking. False negative time
(FN) is the time when the VAD algorithm predicted no speech but the user was
speaking. False positive time (FP) is the time when the VAD algorithm predicted

5 There were not enough female participants to select five.



6 Liscombe et al.

Fig. 1: Segmentation of hypothetical speech and VAD output of the same audio
stream. The third tier shows the four possible outcomes used for scoring. This figure
is reprinted from the original publication (20).

speech but the user was not speaking. Additionally, the calculation of DCF can take
into account a “collar” of time both preceding and following the user speech which
is not factored into the false negative or false positive times. Figure 1 shows a collar
length of 0.5 seconds, though all the results presented herein use no collar. DCF is
computed as follows:

PFP =
total FP time

annotated total non-speech time

PFN =
total FN time

annotated total speech time

DCF = 0.75×PFN +0.25×PFP

Though we used DCF score to decide on optimal performance, in this paper we
also report on additional metrics that are of interest due to the fact that they are
discrete negative dialog events that are very detrimental to user satisfaction when
conversing with an automated agent. We report on the interruption rate (I%) as the
number of turns in which the participant was interrupted by the automated agent /
total participant turns × 100; turn false accept percentage (FA%) as the number of
turns in which the participant did not say anything but the automated agent thought
they did / total participant turns × 100; and turn false reject percentage (FR%) as
the number of turns in which the participant did say something but the automated
agent thought they did not / total participant turns × 100. For visual consistency,
we also report on the the variables that comprise DCF , but expressed as percentages
in the following manner: FN% = PFN ×100 and FP% = PFP ×100.

4.2 Simulation Experiments

We conducted offline simulated VAD experiments on annotated participant sessions
with the aim of discovering the optimal configuration settings for the most accu-
rate spoken turn detection. We chose a parameter space that amounted to 24,000
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different VAD configurations. The bounds of this space were chosen empirically
based on values that yielded successful past VAD performance and were sam-
pled from within the following parameter values ranges: endSilence: 500-8000,
adjustment: 0.0001, threshold: 30-40, minSignal: 0-20, startSpeech: 20-200,
initialSilence: 2000-8000. For each offline simulation run, we chose a specific
value set from within this feature space. We then split each session into discrete user
turns and sent each turn through the VAD algorithm in order to obtain the VAD start
and end time, if any. If more than one VAD event was detected, we only consid-
ered the first one since this event would end the turn in a deployed dialog system.
We then computed DCF scores for each of these simulated runs and observed VAD
configuration parameter values that optimized DCF.

5 Results

Table 1 shows the optimal VAD configurations for each cohort. We obtained two
baseline VAD performances with which to compare the optimal cohort-only per-
formances. The first results were obtained from optimal VAD settings for a control
group, as published in (14). This corpus of 906 dialog turns was collected from indi-
viduals who suffered from no neurological or cognitive diseases. Table 2 shows the
VAD performance per cohort when using VAD settings optimized on this control co-
hort, which was reported to have a DCF score of 0.043 and interruption percentage
(I%) of 5.91%. The last row in Table 1 lists the VAD settings used in this case.

To obtain another baseline of VAD performance, we ran a simulation experiment
on all data combined across disease cohorts. The optimal VAD parameter values
found can be seen in the penultimate row of Table 1 (Combined). Table 3 shows
the VAD performance of each cohort using these baseline VAD parameters settings.
The most drastic change in optimal VAD settings is a doubling of the endSilence

time. We also see that DCF was reduced by an order of magnitude and that I% and
percentage false negative time (FN%) were significantly reduced across the board
when moving from control-optimized settings to those of our disease cohorts.

Next, we ran a simulation experiment for each of the cohorts separately. The
VAD performance using optimal parameter values for each cohort is shown in Table
4 and the optimal VAD configurations are shown in Table 1. We observe a further
reduction in DCF , I%, and FN%, especially with respect to the depression cohort.
We see, however, that the percentage of false positive speech (FP%) increases. This
is actually a desirable trade off since interrupting the user is worse that waiting
a bit too long to end the VAD6; this relationship is encoded in DCF algorithm.
Furthermore, endSilence once again emerged as the most variable VAD parameter
setting. The optimal duration of non-speech time to ensure that the user turn was
complete was 3,200ms for all cohorts combined. This is now shown to be a splitting
of the difference between two pairings of cohorts: for both the Parkinson’s and ALS

6 Waiting too long to end VAD is what contributes to FP%.
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Table 1: Optimal VAD configuration per pathological cohort. Also shown, for refer-
ence, are configurations for all cohorts combined and healthy controls (as reported
in (14), though here the sample size is larger that for the other cohorts).just a hack
to get this caption right

Cohort initialSilence endSilence threshold adjustment minSignal startSpeech

Parkinson’s 7500 2600 40 0.0001 0 100
ALS 7500 2600 32 0.0001 13 60

Depression 7500 4100 33 0.0001 19 60
Schizophrenia 8000 4500 32 0.0001 15 40

Combined 7500 3200 38 0.0001 5 20
Control 7500 1600 34 0.0001 6 140

Table 2: Baseline VAD performance per cohort using parameter settings optimized
for control speakers on a different data set (14) using VAD parameter settings on
last line of Table 1.

Cohort FA% FR% I% FN% FP% DCF

Parkinson’s 0.00 0.61 5.81 14.23 2.00 0.1117
ALS 0.00 0.00 11.11 14.50 0.88 0.1110

Depression 0.00 0.00 39.02 29.80 0.32 0.2243
Schizophrenia 0.00 3.08 24.62 32.25 0.38 0.2428

Table 3: Baseline VAD performance per cohort using parameter settings optimized
over all cohorts combined. Shaded cells indicate a better performance metric value
compared to those in Table 2.

Cohort FA% FR% I% FN% FP% DCF

Parkinson’s 0.00 0.31 1.22 2.30 7.63 0.0363
ALS 0.00 0.00 0.85 0.98 3.10 0.0151

Depression 0.81 0.00 10.57 5.07 0.63 0.0396
Schizophrenia 0.00 3.85 3.08 5.20 1.50 0.0427

Table 4: VAD performance per cohort using parameter settings optimized for the
data in that cohort. Shaded cells indicate a better performance metric value com-
pared to those in both Table 2 and Table 3.

Cohort FA% FR% I% FN% FP% DCF

Parkinson’s 0.00 0.00 1.22 2.09 5.51 0.0295
ALS 0.00 0.00 0.00 0.67 2.21 0.0105

Depression 0.00 0.00 1.63 0.67 1.61 0.0090
Schizophrenia 0.00 3.08 0.00 2.95 6.12 0.0375

Table 5: Average optimal VAD configuration per cohort using leave-one-user-out
cross validation.

Cohort initialSilence endSilence threshold adjustment minSignal startSpeech

Parkinson’s 7500±00.0 2560±30.6 39.9±0.1 0.0001 0.0±0.0 92.0±8.0
ALS 7500±00.0 2630±30.0 32.0±0.0 0.0001 13.0±0.0 38.0±2.0

Depression 7500±00.0 3790±34.8 33.0±0.0 0.0001 18.6±0.4 78.0±2.0
Schizophrenia 7900±66.7 4410±90.0 32.0±0.0 0.0001 15.4±0.3 40.0±0.0
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Fig. 2: Percent interrupted turns per domain plotted against endSilence. The circles
on the graph indicate the lowest DCF score for each cohort and thus the optimal
setting. Also shown is the optimal endSilence of 1.6 seconds computed for healthy
controls (as seen in Table 1).

cohorts the optimal value was much shorter at 2,600ms; whereas, for the depression
and schizophrenia cohorts the optimal values were much higher at 4,100ms and
4,500ms, respectively.

Figure 2 shows how I% changes as endSilence increases using data from
the cohort-specific tuning simulations. A figure such as this could be done for all
VAD parameters, but we only present this one because interruptions are usually of
highest interest to users and developers of automated dialog systems and because
endSilence shows the most striking differences across cohorts. The reason why
the optimal I% is not 0% for all cohorts (see, Parkinson’s) is because DCF starts to
increase again at the point at which waiting too long for additional user speech (that
never comes) begins to increase false positive time.

It is important to point out that DCF is a good metric for comparing VAD set-
tings within a data set, but not for comparing across data sets. This is because DCF
depends on the ratio of speech and non-speech lengths in a data set. These ratios
will differ across data sets and this will be reflected in DCF values without actually
representing a performance improvement or reduction. This is why we have also
reported performance w.r.t. interruption rate; in addition to being a disruptive event
in a conversation, it is a metric that can be used to compare performance across data
sets.

In addition to the self-tuning simulation results already presented, we also ran
cohort-specific 10-fold cross validation tests in which we found optimal VAD pa-
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rameter settings for 9 users in each cohort and then tested VAD performance on the
one held out user. Table 5 lists the average optimal settings and standard error over
the 10 training sets and show little variation from the results we have already pre-
sented on self-tests in Table 1. This is a sign that the findings presented herein are
robust.

6 Discussion

The aim of this research was to investigate optimal VAD parameter settings, as mea-
sured by the NIST detection cost function (DCF), for pathological speech collected
by a multimodal dialog system from severe presentations of four conditions: ALS,
Parkinson’s disease, schizophrenia, and depression. This can allow us to extend the
utility of such systems to be truly generalizable across neurological and mental
health conditions, and deal with speech patterns across multiple conditions, espe-
cially where patients are severely affected. We observed clear evidence that one
setting in particular—endSilence—differed based on pathology type. Across our
cohort data, the value of this parameter should be set higher than for healthy speak-
ers (1.6 seconds); specifically, it was better to wait for 2.6 seconds of non-speech
before deciding the participant turn had ended in the cases of the ALS and Parkin-
son’s patients, whereas for schizophrenic and depressed participants it was better to
wait even substantially long longer than that: 4.5 and 4.1 seconds, respectively. Fur-
thermore, we observed that these findings are robust via cross validation. Though
all cohorts can suffer from both speech motor and cognitive impairment, ALS and
Parkison’s patients tend to exhibit more of the former symptoms and schizophrenic
and depressed patients more of the latter. This was true for the data presented in this
paper. We believe that for for schizophrenic and depressed patients, and possibly
any condition that affects cognitive processing, the optimal time to wait before con-
sidering a patient turn as completed should take into account longer phrase-internal
pause times symptomatic of cognitive processing impairment.

We did not see the same stratification in cohorts with respect to the initial-

Silence parameter, though the schizophrenia cohort stood out. In addition to the
longest endSilence time, the optimal VAD performance for this cohort had the
highest initialSilence value as well, at 8 seconds. As a reminder, initial-
Silence is the maximum amount of time to give the participant to speak at the
beginning of an utterance. If it is the case that these parameter values are tuned to
pausing behavior indicative of cognitive impairment, then this would suggest that
schizophrenic patients have higher impairment than depressed patients and VAD
settings should account for this.

The cohort-specific optimal values of the remaining CMU Sphinx VAD param-
eters—threshold, adjustment, minSignal, startSpeech—do not seem to
generalize well. We believe this is because they are parameters that address acoustic
environmental conditions. Such environmental conditions are difficult to replicate
across studies and applications; and indeed, our data did not have the exact same
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recording conditions across cohorts. Additionally, these parameters are particular
to CMU Sphinx’s VAD algorithm and these settings would therefor not be useful
for researchers using a different VAD algorithm. However, we believe that the gen-
eral paradigm of tuning VAD configuration parameters using extensive simulations
should be conducted and does generalize to any application and domain. While the
exact values of this type of VAD parameter will differ, the optimal values should be
discovered for the recording and environmental conditions of the particular applica-
tion and pathological cohort.

In sum, this paper has presented the first investigation of pathology-specific
VAD settings for digital health dialog agents in the literature, to our knowledge.
We simulated the performance of a VAD system optimized across severe presenta-
tions of four pathological speech cohorts—ALS, Parkinson’s disease, schizophre-
nia, and depression—and found two optimal modes of operation based on optimal
endSilence values for speech motor conditions and mental health conditions, re-
spectively. This paper has argued that the estimation of such optimal VAD settings
are essential for remote monitoring systems, not just to improve accessibility and
user experience (UX) of such systems for disordered populations (and therefore
continued buy-in), but also because they are the gateway into collecting proper data
necessary for all other aspects of later analysis. For example, if an utterance-internal
pause is detected as an utterance-final pause then the system interrupts the user (poor
user experience), while also adversely impacting all pause-related metrics. On the
other hand, if the VAD waits too long to end, the participant may think that the
system did not hear them, leading to repetitions. This in turn could negatively im-
pact all metrics that rely on expected utterance durations and word counts. Going
forward, this analysis paves the road for several planned future directions: one, to-
wards building a truly generalizable virtual health agent that can adapt to the speech
patterns of participants across a range of neurological and mental health conditions;
two, towards informing multimodal user interface and UI/UX designs to better adapt
to severely pathological speakers; and three, towards investigating the utility and
robustness of multimodal VAD (integrating both face and speech information) to
improve the robustness of such systems even further.
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