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Abstract
Clinical depression is one of the most common mental disor-
ders and technology for remote assessment of depression, in-
cluding monitoring of treatment responses, is gaining more and
more importance. Using a cloud-based multimodal dialog plat-
form, we conducted a crowdsourced study to investigate the ef-
fect of depression severity and antidepressant use on various
acoustic, linguistic, cognitive, and orofacial features. Our find-
ings show that multiple features from all tested modalities show
statistically significant differences between subjects with no or
minimal depression and subjects with more severe depression
symptoms. Moreover, certain acoustic and visual features show
significant differences between subjects with moderately severe
or severe symptoms who take antidepressants and those who do
not take any. Machine learning experiments show that subjects
with and without medication can be better discriminated from
each other at higher severity levels.
Index Terms: multimodal dialog system, remote patient moni-
toring, depression, anti-depressants

1. Introduction
Clinical depression is a leading cause of disability worldwide.
In 2020, an estimated 8.4% of U.S. adults had at least one
episode of major depression [1], and the prevalence of depres-
sion symptoms increased notably during the COVID-19 pan-
demic [2]. Diagnosis, detection and monitoring of mental and
neurological conditions, including major depressive disorder
(MDD), remain a critical need today. This necessitates the
development and validation of scalable, multimodal, and cost-
effective technology for automatic assessment of individuals’
health and well-being in the user’s natural information technol-
ogy environment [3]. Because depression affects speech fea-
tures [4, 5, 6], facial activity and expressiveness [7, 8], these
signals have the potential to serve as objective markers that can
be analyzed automatically by means of speech processing and
computer vision. An extensive review on speech analysis in de-
pression assessment can be found in [9]. In this contribution, we
aim at identifying measures that can be used to monitor treat-
ment response with respect to antidepressants and anti-anxiety
medication.

While earlier efforts for remote patient monitoring (RPM)
usually required the use of dedicated hardware [10], recent
work in the field focuses on using available consumer devices
such as smartphones and wearables for various types of mon-
itoring [11]. Regarding the mode of interaction with patients,
multimodal conversational agents offer numerous advantages
in RPM, including cost-effectiveness and scalability compared
to human-to-human interviews, higher engagement levels and
user acceptance compared to text-only interactions [12], and the

ability to automatically analyze features from different modali-
ties.

For the present study the Modality service was used, which
is a cloud-based multimodal dialog system [13, 14] that can be
used to elicit evidence required for detection or progress mon-
itoring of neurological or mental health conditions through au-
tomated screening interviews. Users participate in a structured
conversation with Tina, a virtual dialog agent. Depending on
the health condition to be monitored, different dialog protocols
can be employed. For this study, a comprehensive set of tasks
to probe motor speech and cognitive functions was used.

In this paper, we present a study on crowdsourced mul-
timodal speech and video data from people with depression
at various symptom severity levels. We investigate how well
speech, text, cognitive and orofacial features distinguish sub-
jects with differing depression severity and antidepressant use.
We present several extensions to the previously presented di-
alog system [14], including a set of tasks to assess cognitive
functions, and the use of automatic speech recognition (ASR)
to extract linguistic features in addition to acoustic and visual
metrics.

The main contributions of this paper are a comprehensive
description of a crowdsourced data collection using a multi-
modal, web-based dialog system, and an exploratory investi-
gation of the effects of antidepressants on various speech, text,
and video features in subjects with different depression severity.

2. Data collection
The data collection platform Prolific1 was used to recruit par-
ticipants. The pre-screening question for participant selection
was, Are you currently taking any medication to treat symptoms
of depression, anxiety or low-mood (e.g. SSRIs)? The set of
available answer options was: No; Prefer not to say; Yes, I’m
taking anti-depressants; Yes, I’m taking anti-anxiety medica-
tion; Yes, I’m taking anti-psychotics; Yes, I’m taking a combi-
nation of these.

After informed consent, a virtual agent guided participants
through a set of structured speaking exercises as well as open-
ended questions to elicit different types of speech, including
read speech, automatic speech (counting up from one), and
spontaneous speech (picture description task and one open
ended question). The study protocol was granted exempt status
by an external Institutional Review Board. This conversational
protocol is based on previous work in remote depression mon-
itoring [15]. In addition, the protocol contains a set of tasks
designed to assess cognitive abilities, including immediate and
delayed word recall, forward and backward digit spans, a cat-
egory fluency task (naming as many animals as one can think

1https://www.prolific.co/



Table 1: Participant statistics. Age and PHQ-8 score are shown
as mean (standard deviation).

Cohort # subjects Age PHQ-8

NO-MED 118 (76 female) 40.9 (15.5) 8.6 (6.6)
MED 151 (99 female) 39.3 (13.0) 10.9 (6.4)

Figure 1: Distribution of PHQ-8 scores in the MED and NO-
MED cohorts.

of), and a three-step task where participants are asked to touch
their chin, nose and ear in a specific order [16]. These tasks
are based on common assessments of cognitive domains, such
as executive functioning, working memory, encoding memory,
and retrieval memory [17, 18, 19].

After the conversation with Tina, participants were asked
to fill out the following questionnaires: a usability survey, the
Communicative Participation Item Bank - short form (CPIB-
S) [20], and the Patient Health Questionnaire eight-item de-
pression scale (PHQ-8), a standard instrument for depression
assessment [21].

A total of 269 participants completed the assessment in the
time from 2022-02-18 until 2022-08-10. 118 participants re-
ported that they do not take medication to treat depression or
anxiety (labeled as NO-MED) and 151 participants reported
taking medication (MED). Table 1 shows participant statistics.
Based on the severity levels described in [22, 23], the cutpoints
5, 10, 15, and 20 on the PHQ-8 score were used to study differ-
ent sub cohorts based on depression severity. Fig. 1 shows the
distribution of PHQ-8 scores. Audio was recorded at 44.1 kHz
sampling rate.

3. Feature Extraction and Data
Preprocessing

The Modality service has built-in analytics modules that ex-
tract a variety of acoustic and visual speech metrics from
segmented user utterances in real-time. Acoustic metrics
are extracted using Praat [24] and Kaldi [25]. Visual met-
rics are computed based on facial landmarks, which are ex-
tracted using the face detector in the dnn module of OpenCV
(https://opencv.org/), and the Dlib [26] facial land-
mark detector. Details about the analytics modules and the ex-
tracted metrics have been previously described [27].

In addition, linguistic metrics were computed based on au-
tomatic transcriptions obtained through the Amazon Transcribe
service.2 We used the python package spaCy3 to compute

2https://aws.amazon.com/transcribe/
3https://spacy.io/

Table 2: Overview of extracted metrics. For visual metrics,
functionals (minimum, maximum, average) are applied to pro-
duce one value across all video frames of an utterance. Visual
distance metrics are measured in pixels and are normalized by
dividing them by the intercanthal distance (distance between in-
ner corners of the eyes) for each subject.

Domain Metrics

A
ud

io

Energy shimmer (%), intensity (dB), signal-to-noise ratio (dB)
Timing speaking and articulation duration (sec.), articulation

and speaking rate (WPM),
percent pause time (PPT, %), canonical timing agree-
ment (CTA, %)

Voice quality cepstral peak prominence (CPP, dB), harmonics-to-
noise ratio (HNR, dB)

Frequency mean, max., min. fundamental frequency F0 (Hz), first
three formants F1, F2, F3 (Hz),
slope of 2nd formant (Hz/sec.), jitter (%)

V
id

eo

Mouth lip aperture/opening, lip width, mouth surface area,
measurements mean symmetry ratio between left and right half of the

mouth
Movement velocity, acceleration, jerk, and speed of lower lip and

jaw center
Eyes number of eye blinks per sec., eye opening, vertical dis-

placement of eyebrows

Te
xt

Lexico-
semantic

word count, percentage of content words, noun rate,
verb rate, pronoun rate,
noun-to-verb ratio, noun-to-pronoun ratio, closed class
word ratio, idea density

Cognitive
scores

percentage of correct words (immediate and delayed
word recall),
digit span forward/backward score (ranges from 0 to 2)

lexico-semantic features for the spontaneous speech parts of the
conversation. These features are inspired by [28].

The cognitive tasks on word and digit recall were scored
automatically based on the ASR output. For word recall, the
score is expressed as the percentage of correct words (regardless
of the order). For the digit span tasks, we assigned a score of 2
if all digits were correctly repeated in the correct order, a score
of 1 if the correct digits were present, but in a different order,
and a score of 0 otherwise. Table 2 provides an overview of all
extracted metrics. For the analysis, two types of features were
constructed based on these metrics: (1) task-specific features,
i.e extracted metrics per speech task (Sec. 2) are considered as
features4 (e.g. percent pause time for picture description would
be one feature), and (2) aggregate features, which are computed
as the mean of a metric across all user turns.

To remove outliers from acoustic and visual metrics, we
employed a distribution based outlier detection algorithm. First,
all metric values that are more than five standard deviations
away from the population mean are removed. These are consid-
ered extreme outliers, which potentially skew the mean. Then,
the mean is re-computed and values outside ±3 standard de-
viations are flagged as outliers and removed from any further
analysis.

Missing data is a common problem in such remote, unsu-
pervised data collections, which affects most machine learning
algorithms because they cannot handle missing feature values.
Reasons for missing data include incomplete dialogs, removed
outliers as described above, or data transmission errors, which
result in failures in the analytics modules. Typically, missing
data can either be removed by discarding affected samples al-
together or can be filled through interpolation methods. We re-

4Note, acoustic metrics were not extracted from all utterances, but
only for those tasks where they are appropriate, whereas visual metrics
were computed for each utterance.



frain from interpolating data because this can potentially distort
the results, particularly if a large number of gaps is filled for
a given feature. We use a threshold to determine a trade-off
between removing features with many missing values and re-
moving samples (participants). Specifically, features with more
than 5% missing values in the data set are taken out completely,
before remaining missing data is removed by taking out affected
participant sessions.

4. Analyses and Observations
The central research question we aim to answer is the follow-
ing: Based on remotely recorded data with users’ end devices,
which speech, orofacial, cognitive, and linguistic features show
a statistically significant difference between subjects who take
medication to treat depression symptoms and those who do not
take such medication?

On the way to answering this, a first step in our analysis was
to compare features from different depression severity sub co-
horts to each other – regardless of medication use. This was
done to investigate the efficacy of remotely collected speech
data to distinguish, for example, minimal from severe depres-
sion. Specifically, we compared subjects with no or minimal de-
pression (PHQ-8 score below 5) to different groups of patients
reporting symptoms of depression at different cutoff points as
described by [22]. We compared subjects with no or minimal
depression to all patients with mild to severe symptoms of de-
pression (PHQ-8 score ≥5), patients with moderate to severe
symptoms (PHQ-8 ≥10), and patients with moderately severe
to severe symptoms (PHQ-8 ≥15). Because of the small sample
size of patients who reported severe symptoms (PHQ-8 ≥20,
n=25) this group was not included as an individual cohort. In
the following presentation of findings, we focus on aggregate
features (averaged metrics across all user turns in a session, cf.
Sec. 3).

Non-parametric Kruskal-Wallis tests were conducted for
each individual feature to identify features that exhibit a statis-
tically significant difference (p = 0.05) between two groups
and effect sizes in terms of Glass‘ Delta were computed for
these features. We used a Benjamini-Hochberg correction to
control for false discovery rate [29]. Features from all tested
modalities were present. Most prominently, we observed differ-
ences in kinematic features of the lip and jaw, such as average
and maximum speed, which indicate slower movement in more
severely depressed groups. Among the acoustic features, artic-
ulation rate, number of syllables and speaking duration for read
sentences show signal. Cognitive measures for the digit span
and immediate word recall tasks indicate differences between
cohorts. Linguistic features related to noun rate, pronoun rate,
content words and noun:pronoun and noun:verb ratios show sig-
nal for some comparisons.

While looking into effects of medication use, we focused
on three sub cohorts PHQ-8 ≥{5,10,15}.5 Each sub cohort was
divided into MED and NO-MED subjects and Kruskal-Wallis
tests were conducted to identify features that are different be-
tween these groups. With this setup, we wanted to find out
whether observed effects between MED and NO-MED groups
are stronger in more severely depressed participants. To in-

5The PHQ<5 group was left out of this analysis because we were
mainly interested in the effect of medication in subjects with at least
mild depression. In the present setup, more severely depressed subjects
were considered as a subset of groups at lower cutpoints, e.g. partic-
ipants in the PHQ≥15 group are also included in the PHQ≥{5,10}
groups.

Figure 2: Effect sizes of acoustic, cognitive, linguistic, and
visual metrics that show statistically significant differences at
p < 0.05, shown with 95% confidence interval. Negative ef-
fects indicate higher values in the PHQ-8 <5 group. LL: lower
lip, JC: jaw center, SNR: signal-to-noise ratio, SIT: sentence in-
telligibility test.

vestigate how well the extracted features can discriminate the
groups, binary classification experiments with a random forest
classifier were done using stratified 5-fold cross validation. Im-
plementation was done with scikit-learn6, and we used the de-
fault parameters for the random forest classifier. The follow-
ing feature sets were used as input to the classifier: (1) acous-
tic only, (2) visual only, (3) cognitive only, (4) linguistic only,
(5) the combination of all these features, and (6) the subset of
features that showed statistically significant difference between
any of the tested cohort pairs (Fig. 3a). We found that over-
all the best results were achieved with feature sets (2) and (6)
across the different severity levels. Acoustic speech features
yielded better results for the PHQ-8>15 group compared to the
other cohorts.

Fig. 3 shows the effect sizes for statistically significant dif-
ferences (Fig. 3a) and receiver operating characteristic (ROC)
curves for the classification experiments, using feature set (6)

6https://scikit-learn.org/



(a) Effect sizes of acoustic, visual, and cognitive metrics that show
statistically significant differences between MED and NO-MED co-
horts at p < 0.05, shown with 95% confidence interval. HNR:
harmonics-to-noise ratio.

(b) PHQ-8 ≥ 5 (# samples: 108 MED, 73 NO-MED)

(c) PHQ-8 ≥ 10 (# samples: 77 MED, 49 NO-MED)

(d) PHQ-8 ≥ 15 (# samples: 42 MED, 30 NO-MED)

Figure 3: Effect sizes and ROC curves for telling apart MED
from NO-MED subjects at different severity levels. Features
from (a) were used as input to a random forest classifier.

– features from the effect size plot (Fig. 3b-3d). We observed
moderate effect sizes (absolute effects around or less than 0.5)
for a number of features, including harmonics-to-noise ratio
(HNR), articulation rate, reading passage articulation duration,
velocity and acceleration measures of the lower lip, and the digit
span forward score. The ROC curves illustrate that the classifi-
cation into MED and NO-MED cohorts is most difficult for the
PHQ≥5 group, whereas the area under curve (AUC) score for
the PHQ≥10 and PHQ≥15 groups is well above chance level.
Generally, these results need to be interpreted with caution be-
cause of the small samples.

5. Discussion

For pharmaceutical trials and clinical monitoring purposes, it is
important to identify biomarkers that can help track treatment
response to depression medication. This study identified key
acoustic, cognitive, linguistic and orofacial features that show
potential for characterizing depression, both in terms of severity
of symptoms and antidepressant use. Our observation of mod-
erate effect sizes for rate and timing measures of speech and
pausing (articulation rate and duration, as well as lower lip ve-
locity and acceleration) in distinguishing participants with and
without medication are consistent with Mundt et al. (2012),
who found that these measures are consistent in classifying pa-
tients with major depressive disorder (MDD) enrolled in a four-
week, randomized, double-blind, placebo-controlled study as
treatment Responders or Nonresponders, based on a 50% or
greater improvement from baseline [30]. Liu et al. (2017)
also found that speech pause time captures clinical treatment
with antidepressants [31]. Our findings are also consistent with
Abbas et al. (2021), who found that MDD patients’ responses
to antidepressant treatment (ADT) demonstrated significant in-
creases in multiple digital markers including facial expressivity
and amount of speech [32].

That being said, it is important to temper the promise of
our findings with several important caveats. Our sample size
is not large enough to truly claim generalizability of findings.
The smaller the sample, the larger the risk of having model
“blind spots” that in turn lead to variable estimates of true model
performance on unseen real world data, giving algorithm de-
signers an inaccurate sense of how well a model is performing
during development [33]. This is also one reason why we do
not consider deep neural network models, which require a large
number of training data samples, for classification in this study
(the other being the relative difficulty in interpreting such mod-
els). Furthermore, we have considered a wide range of anti-
depressants as well as anti-psychotics in the study, which con-
tributes to the variability (the two types of medication have dif-
ferent treatment and side effects; however, we included both for
the sake of a larger sample). Finally, findings regarding the cog-
nitive scores need to be taken with a grain of salt, because the
scores rely on ASR output, and errors can be propagated.

In sum, we have identified acoustic, cognitive, linguistic
and orofacial features that show potential for characterizing de-
pression, both in terms of severity of symptoms and antidepres-
sant use. Future work will focus on confirming the robustness
and generalizability of these findings on a larger and more bal-
anced sample, especially for people with severe symptoms, and
on investigating effects with respect to different drug classes,
with a more in-depth analysis of the specific causes for the ob-
served differences in features with medication use.
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