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Abstract
Spoken language understanding (SLU) in human machine conversational systems is the process of interpreting the semantic
meaning conveyed by a user’s spoken utterance. Traditional SLU approaches transform the word string transcribed by
an automatic speech recognition (ASR) system into a semantic label that determines the machine’s subsequent response.
However, the robustness of SLU results can suffer in the context of a human-machine conversation-based language learning
system due to the presence of ambient noise, heavily accented pronunciation, ungrammatical utterances, etc. To address
these issues, this paper proposes an end-to-end (E2E) modeling approach for SLU and evaluates the semantic labeling
performance of a bidirectional LSTM-RNN with input at three different levels: acoustic (filterbank features), phonetic
(subphone posteriorgrams), and lexical (ASR hypotheses). Experimental results for spoken responses collected in a dialog
application designed for English learners to practice job interviewing skills show that multi-level BLSTM-RNNs can utilize
complementary information from the three different levels to improve the semantic labeling performance. An analysis
of results on OOV utterances, which can be common in a conversation-based dialog system, also indicates that using
subphone posteriorgrams outperforms ASR hypotheses and incorporating the lower-level features for semantic labeling can
be advantageous to improving the final SLU performance.

Keywords Spoken language understanding · Human-machine conversational systems · Computer assisted language
learning · End-to-end modeling · Education

1 Introduction

The popularity of intelligent virtual assistants, such as
Alexa (Amazon), Siri (Apple), Google Home, and Cortana
(Microsoft), has accelerated the progress of human-machine
conversational systems towards offering more natural,
intuitive, robust, and effective interactions. The widespread
use of such virtual assistants has also spurred on the
development of many new and innovative applications,
such as human-computer conversation-based language
learning, which will be the focus of this paper. Human-
machine conversation, empowered by artificial intelligence,
can facilitate natural and effective learning by providing
timely assessments, interactive feedback, and personalized
learning materials to a student when a human teacher is
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not available. Spoken language understanding (SLU), the
process of interpreting the semantic meaning conveyed
in a spoken utterance, is a key component in enabling
an interactive system to take appropriate actions in a
human-computer conversation. Currently, achieving high
levels of SLU performance is still a challenge in many
domains, especially in the case of realistic, interactive
spoken language learning applications. This is because it
is difficult to obtain sufficiently large amounts of labeled
data that is matched with the real user scenarios when
new applications are developed from scratch, thus requiring
them to be bootstrapped from unlabeled and mismatched
data.

State-of-the-art SLU systems generally contain two
components: the automatic speech recognizer (ASR), which
decodes the input speech into text, and the natural
language understanding (NLU) module, which transforms
the ASR hypothesis into a concept or semantic label
that can drive subsequent computer behavior. These two
components are typically based on statistical models
trained on a large amount of data using a variety of
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machine learning methods. In contrast to NLU on written
text, the effectiveness of the SLU system also largely
depends on the performance of the ASR system, its
robustness to ASR errors, and its ability to appropriately
process spontaneous speech, which can contain hesitations,
corrections, repetitions, etc. Exacerbating this, non-native
speech collected by conversation-based language learning
applications may be characterized by additional difficult
traits such as pronunciation errors, large numbers of
disfluencies, ungrammatical phrases, loan words, etc.,
which can make the ASR output even less accurate.
It should be noted that even human experts often find
it difficult to transcribe spoken responses with these
characteristics produced by non-native speakers.

SLU can be regarded as a cascaded conversion from the
speech signal input to a semantic label output in acoustic,
phonetic, lexical and semantic spaces. The following design
considerations can help make the SLU system robust
through the successive steps in the conversion process:
the acoustic model (AM) should be resistant to different
acoustic channel conditions and ambient noises; the lexical
model should be adaptable to speaker variability exhibited
in accented pronunciations and out-of-vocabulary words
(OOV); the language model (LM) should be flexible enough
to handle syntactic and grammatical variation; and the NLU
model should be insensitive to ASR errors and variations
in pragmatics. To address these SLU robustness issues in
the context of language learning applications, we investigate
using an end-to-end modeling approach, which utilizes as
little prior knowledge as possible by skipping one, two or
all of the stages (along with the corresponding required
human labels) in the cascaded conversion process, to predict
semantic labels from the speech signal directly using ASR-
free modeling and from the sub-phone search space by
skipping the language model; furthermore, we explore how
the performance can be improved by fusing the results from
the different levels.

2 RelatedWork

Most state-of-the-art SLU systems utilize deep learning
technologies to perform semantic tagging with transcrip-
tions or ASR hypotheses [1–3]. Recurrent Neural Networks
(RNNs) with a variety of different architectures have been
proposed for semantic slot filling and they have typically
been evaluated on the well-known Airline Travel Infor-
mation System (ATIS) benchmark task. The experimental
results show that the RNN-based models outperform a con-
ditional random field (CRF) baseline [1]. Joint slot filling
and intent detection based on Convolutional Neural Net-
works (CNNs), in which the features are extracted through

CNN layers and shared by these two tasks, also leads to
improved performance over the CRF baseline [2].

Many researchers have tried to skip the ASR step entirely
or to only use partial information extracted from its mod-
ules for semantic classification [4–7]. Utterance classifica-
tion can be performed by unsupervised phonotactic models
together with token sequence classifiers [6], which can
avoid manual word-level transcription of the utterances and
achieve a performance close to those of conventional meth-
ods involving word-level language models. Techniques for
building call routers from scratch without any knowledge
of the application vocabulary or grammar have also been
explored [4].

Recently, end-to-end learning directly from speech input
has become popular for various spoken language processing
tasks. These architectures can model the output directly
from the speech signal, i.e., using spectral features such
as MFCCs, filter bank features, or directly from the
raw waveform. End-to-end sequence-to-sequence learning
has been used in text-to-speech synthesis systems [8–
10] replacing the front-end and back-end modules with
a single system that converts character sequences to a
Mel spectrogram representation which is then converted to
speech. End-to-end models built for speaker recognition,
in which feature engineering and scoring is performed in
a single model, can outperform state-of-the art methods
[11, 12]. End-to-end networks have also been investigated
for a range of other speech processing tasks, including
native language identification [13], language recognition
[14], emotion recognition [15], keyword spotting [16, 17]
and voice activity detection [17].

Traditional ASR systems consist of three modules that
are compiled independently of each other: an acoustic
model, a pronunciation model and a language model.
Furthermore, a typical spoken language understanding
system consists of a pipeline of components, and the
ASR and NLU components require independent training.
The ASR model is optimized using the word error rate
(WER) criterion while the NLU model is trained to
maximize classification accuracy. End-to-end learning for
speech recognition has become very popular in recent
years[18–24]. In an end-to-end ASR system, the individual
components can be learned jointly in a single module using
deep learning.

Following the success of end-to-end ASR systems, we
made the first ever attempt at designing an end-to-end spo-
ken language understanding system [25] thereby replacing
the ASR and NLU components with a single component
that can extract intents/semantic labels directly from the
user’s spoken response. While in an end-to-end ASR sys-
tem the task is to learn a sequence-to-sequence represen-
tation, in an end-to-end SLU system the task is to learn
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a sequence-to-class (intent/domain/semantics) representa-
tion which requires a more complex transformation of the
input. We employed MFCC features as the input to a long
short-termmemory recurrent neural network-based (LSTM-
RNN) encoder-decoder network in [25, 26]. In addition,
there have been some recent attempts at end-to-end SLU
using Mel filterbank features as input to different encoder-
decoder architectures [27, 28]. While research efforts in
[27, 28] for designing end-to-end spoken language under-
standing leveraged massive amounts of data to train models,
our work [25, 26] specifically looks at building models in
low-resource settings.

3 Human-machine Conversation-based
Language Learning

This research is being conducted in the domain of
human-machine conversation-based language learning, a
particularly promising application area for spoken dialog
system (SDS) technology. Due to the increasing demand
to learn English for success in the global economy, it is
difficult for English learners around the world to have
sufficient opportunities to practice speaking and receive
feedback about their speaking proficiency; SDS-based
English learning applications can provide a means to
achieve these goals when there is limited access to human
instructors. The main criterion in designing the SDS-based
speaking tasks is to make them as authentic as possible
in order to provide learners with valid opportunities for
practicing the English skills that they need in order to
improve their communicative competence; therefore, the
tasks considered for this effort are situation-based, goal-
oriented tasks including conversational functions that are
important for language learners, such as ordering food in
a restaurant, interviewing for a job, making requests in
a workplace environment, asking for information, etc. (an
online sample of some of the conversation-based tasks is
available at http://englishtasks.org).

Since the main goal of conversation-based tasks for the
purpose of language learning is to provide the learners
with opportunities to practice speaking, designers typically
aim to maximize the user’s speaking time in order to
provide more practice opportunity and elicit a more valid
response for scoring and feedback. This is in contrast to
standard commercial SDS applications, such as automated
customer support systems and digital personal assistants
which typically aim to minimize user speaking time in
order to complete the conversation as quickly as possible.
This goal of maximizing user speaking time means that
the conversations typically encourage the learners to use a
broad range of vocabulary and sentence structures; this can
make the task of SLU more challenging than it would be in

a standard SDS application in which the user’s utterances
should be as constrained as possible to facilitate successful
task completion.

We used the multimodal dialog system HALEF1 to
collect the data used in this study. HALEF is a modular
system based on open-source components and leverages
W3C recommendations and open industry standards.
Further details about the architectural components are
provided in [30]. The system is hosted in the cloud and
users can connect to it using web browsers supporting
WebRTC. This enables us to leverage crowdsourcing to
collect large amounts of data to develop applications and
for usage in research studies. Media and metadata from the
conversations are stored on the backend and are then used
for iterative improvements. The improvement process has
several steps: the data is first transcribed, then annotated
with semantic labels, and finally used to update and refine
the conversational task design and models for speech
recognition and spoken language understanding [29].

This study examines an interactive speaking task that
simulates a job interview scenario. The conversation is set
up as a system-initiated dialog in which a representative at a
job placement agency interviews the language learner about
the type of job they are looking for and their qualifications.
The crowdsourcing user pool was restricted to non-native
speakers of English. An example of one dialog state in
the job interview task, including the question posed by the
system, human transcriptions of sample user responses, and
the corresponding gold-standard semantic labels for each
utterance, is shown in Table 1. Table 2 comprehensively
lists the possible semantic labels associated with each
branching dialog state in the job interview application. The
ultimate aim of the task is to provide interactive feedback
to language learners about whether they have demonstrated
the linguistic skills necessary to provide appropriate,
intelligible responses to the interviewer’s questions and to
complete the communicative task successfully.

4Model Architectures for SLU

Predicting semantic labels for spoken utterances in the
job interview conversations is formulated as a problem of
semantic utterance classification, which aims at classifying
a given utterance into one of M semantic classes,
{ck

1, ..., c
k
M}, where k is the dialog state index and M

is the total number of semantic labels defined for a
given dialog state. A straightforward way to do semantic
utterance classification is to use a sequence-to-tag function,
which maps a sequence of input feature vectors, O =
{o1, o2, ..., oT }, to a semantic label, ck . The conventional

1https://halef.org
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Table 1 An example of different responses (along with corresponding
gold-standard semantic labels) at one particular dialog state (Mistake)
in the job interview task that deals with how the interviewee would
deal with a co-worker’s mistake.

System question Imagine you saw your

coworker make a mistake.

Which do you think would

be better? To tell the co-

worker about the mistake

or to speak with your

manager?

Sample response 1 I would talk to the team

member and ask him to

rectify their mistake and

it is a better way of

resolving the issue.

Semantic label coworker

Sample response 2 Speaking with the manager

is the best thing I guess.

Semantic label manager

Sample response 3 Yeah if it is a normal

issue, then I’ll go and

discuss with the uh uh

coworker himself. If it is

something big, then I’ll

go to manager and I will

discuss with him and

we will come to the

solution.

Semantic label depends

Sample response 4 Uh uh currently I am

staying in India. Eh.

Semantic label nomatch

conversion from speech signals to semantic labels contains
separate models for the different stages, as follows:

ĉk = argmax
ck

P (ck |W, θc)P (W |θw)P (W |H, θh)P (H |O, θo) (1)

where W = {w1, w2, ..., wN } is a word sequence;
H = {h1, h2, ..., hJ } is a phone sequence; θc, θw, θh

and θo are the parameters of the NLU model, the LM,
the pronunciation dictionary, and the AM, respectively.
This formulation assumes that these four models are
conditionally independent of each other; accordingly,
different corpora can be used to train each model. Generally,
more than a hundred hours of speech collected under
real usage conditions (along with associated transcriptions
and semantic labels for acoustic, language, and NLU
modeling or adaptation) are required to achieve reasonable
SLU performance. When using deep learning methods,

it is important to consider that the speech recognition
performance typically increases monotonically with more
training data [31]; thus, any new application can be
continuously improved by using an iterative cycle of data
collection and model refinement. The performance of the
NLU and the LM can be further enhanced by adding corpora
that contain only text from the same domain into the training
set.

As mentioned in Section 1, the performance of SLU
decoding in the context of a conversational language learn-
ing application can suffer a variety of challenges, rang-
ing from a multitude of different acoustic environments,
accented pronunciations, language model mismatch, and
ASR errors. To break down the different issues leading
to degraded SLU performance, we explore modeling SLU
from the acoustic, phonetic, lexical, and semantic spaces,
i.e., learning the sequence-to-tag function using BLSTM
RNN models with acoustic feature sequences, phone pos-
teriorgrams, and ASR word hypotheses as the input and
concatenating the three BLSTM-RNNs together to compen-
sate for the loss of information in different models. The
schematic diagram of our approach to SLU is shown in
Fig. 1.

RNNs configured to process arbitrary length input
sequences have been successfully applied to solve a wide
range of machine learning problems with sequence data.
With BLSTM cells [32], an RNN can overcome the
vanishing gradient problem in training. For a sequence-to-
tag function such as semantic utterance classification for
spoken dialog systems, the output layer of the BLSTM-
RNN is a softmax layer which contains semantic labels
represented by a one-hot vector and the input layer
contains feature vectors along the time axis. The semantic
label posteriors generated from three BLSTM-RNNs are
concatenated together and modeled by a Support Vector
Classifier (SVC) to predict the semantic labels again as final
predictions, which can be regarded as a score level fusion
process. An alternative fusion method can be feature level
fusion, in which the output generated from the middle layers

Table 2 Dialog state and semantic labels.

Dialog State Semantic Labels

Mistake (MT) coworker, depends,

manager, nomatch

Part or Full (PF) either, full-time,

nomatch, part-time

Self or Group (SG) both, group,

nomatch, self

Work Experience (WE) yes, no,

nomatch
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Figure 1 A schematic diagram of SLU with acoustic features, sub-phone posteriorgrams and ASR word hypotheses.

(instead of the output layers) of the three BLSTM-RNNs are
concatenated together to predict the semantic labels.

4.1 ASR-free End-to-endmodeling (E2E) for SLU

We propose to use an end-to-end modeling approach to
directly model the relations between the given acoustic
feature sequence and the corresponding semantic label,
thereby obviating the need for the NLU model, LM,
pronunciation dictionary, and AM from Eq. 1, as follows:

ĉk = argmax
ck

P (ck|O, θ) (2)

where θ is a set of parameters of the end-to-end model.
We initially tried to use frame-level spectral information
as input for predicting semantic labels with a BLSTM-
RNN model directly; however, the preliminary results were
not encouraging. We conjecture that the approach might
be constrained by the limited training data used in our
experiments and the resultant model either overfits the

training data or is mismatched with the testing data. Speech
acoustic features can vary greatly due to a variety of factors,
e.g., age, gender, accent, and personalized speaking style.
Therefore, a large number of spoken utterances tagged with
corresponding semantic labels would likely be required to
achieve reasonable classifier performance.

Therefore, we propose to use a compact representation
for the utterance in variable length and then employ
the resultant low-dimensional feature vector for semantic
label modeling. We employed a pyramid BLSTM-RNN
structure, as proposed in [33] and presented in Fig. 2.
The pyramid structure makes the model training converge
quickly. The final encoder layer is a fixed-dimensional
vector V , which can be regarded as spoken sentence
embedding. A resampling strategy [33] is used in the
training of the pyramid structure to reduce the likelihood of
overfitting. The encoder layers are initialized (pre-trained)
by an RNN-based acoustic autoencoder [34, 35] in which
the acoustic feature vector sequence is mapped onto a
fixed-dimensional vector with the encoder RNN, and the

Figure 2 ASR-free End-to-end
modeling to SLU.
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decoder RNN reconstructs another sequence from the fixed-
dimensional vector to minimize the reconstruction error. It
is a feature compression based approach with unsupervised
learning. Additional speech data without transcriptions can
be used to enhance the pre-training performance.

Transfer learning or multi-task learning [36] can exploit
commonalities between the training data of different
learning tasks so as to transfer learned knowledge from
one to another. We use multi-task learning for semantic
utterance classification by treating each dialog state as
a separate task. The schematic diagram of our approach
is shown in Fig. 3 where the input layer is the fixed-
dimensional vector V output from the BLSTM-RNN
encoder as the representation of a variable-length acoustic
feature vector sequence and the output layer is the softmax
layer with K one-hot vectors (each vector represents one
dialog state).

4.2 Subphone/Phone Posteriorgram for SLU

The user’s spoken response to the conversation system is
produced as spontaneous speech, which means that the
word sequence is often difficult to predict if we have to
use an LM that is trained on a corpus of written text or
transcriptions of read/prepared speech due to insufficient
training data. Spontaneous speech produced by non-native
speakers is even harder to predict due to the presence of
grammatical and vocabulary errors as well as non-standard
uses of words and phrases. A subphone or phone lattice,
a compact representation of the LVCSR phonetic search
space, was employed for the task of audio information
retrieval [37] to address the issues of the high perplexity
of the LM and the presence of OOV words in queries and
the corpus. Inspired by this approach, we explore SLU
modeling using subphone/phone inputs by skipping the LM.

The semantic labels can be predicted as follows:

ĉk = argmax
ck

P (ck|H, θ)P (H |O, θo) (3)

DNN-based acoustic models for LVCSR use senones
(which are tied tri-phone states from the HMM) as
the output nodes of the DNN. The senones and the
corresponding aligned speech frames from the GMM-HMM
are used to train the DNN. In decoding, given a frame-
level feature vector, the senone posteriors are generated as
the DNN output. A subphone (senone) posteriorgram is the
posterior distribution across the whole senone set over all
frames in an utterance. A phone posteriorgram, i.e., the
posteriors of the phones over time, is generated by summing
up the posteriors of senones of the same phone. It is a matrix
where the horizontal axis is time or the frame index, while
the vertical axis is marked with subphone/phone indices,
and the cell value is the posterior of the subphone/phone h

at time t .
A BLSTM-RNN model is employed for SLU with the

subphone/phone posteriorgram, as shown in Fig. 4. Given
an input vector sequence xt ∈ {x1, ..., xT } where xt is
t-th frame vector containing the posterior probabilities of
subphones or phones and T is the total number of frames in
an utterance, it outputs a vector C = c1, ..., cM indicating
the posteriors of the semantic labels, i.e., the average of the
last state of the forward state sequence, y

f
T , and the first

state of the backward state sequence, yb
1 :

ht = HLST M(Wxhxt + Whhht−1 + bh) (4)

yt = Whyht + by (5)

C = mean(y
f
T , yb

1 ) (6)

Figure 3 Transfer learning with
feedforward NN.
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Figure 4 Subphone/phone
Posteriorgram for SLU.

4.3Word Embedding for SLU

Conventional statistics-based approaches to NLU use a
bag-of-words representation based on the overall frequency
of occurrence of each word to train a semantic utterance
classifier. However, this approach does not adequately
capture the full nature of the speech communication
process since it omits contextual information and temporal
dynamics. Therefore, we employ a BLSTM-RNN model
for SLU with word embeddings, as presented in Fig. 5,
in which each recognized word is represented by a vector

from aWord2Vec model as input to the BLSTM-RNN. ASR
recognition results, in terms of a sequence of recognized
words, traverse the embedding layer and the BLSTM-RNN
layer. In the embedding layer, the word wt ∈ {w1, ..., wN }
represented by its one-hot representation is projected into a
dE dimensional space, et :

et = HE(Ewt) (7)

where E is the word embedding matrix initialized by
Google’s Word2Vec model and optimized during model
training. The BLSTM-RNN layer and the output softmax

Figure 5 Word Embedding for
SLU.
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layer are the same as in Fig. 4 for SLU with the
subphone/phone posteriorgram.

5 Experiments and Results

The BLSTM-RNN-based approaches to semantic utterance
classification with the input features extracted in acoustic,
phonetic, lexical spaces and the fusion of these three
classifiers are evaluated in a spoken-dialog-based language
learning application for non-native speakers, as described
above.

5.1 Corpora

We collected spoken dialog data via the Amazon Mechan-
ical Turk platform. Crowdsourced non-native speakers of
English interacted with the spoken dialog system in the job
interview task described above. Participants were compen-
sated approximately $1.50 for completing the task, which
consisted of reading the instructions, conducting the con-
versation, and completing a post-task survey; the average
completion time for the entire task was 10 minutes. For the
SLU experiments, we extracted all of the responses to the
four branching dialog states listed in Table 2; the result-
ing corpus consists of 4,776 utterances spoken by 1,179
speakers. 4,191 utterances are used as a training set and
the remaining 586 utterances are used as a testing set. 200
utterances randomly selected from the corpus were used to
manually check the audio quality by having annotators view
the waveform and spectrogram together while listening to
the audio. Based on these annotations, we found that the
percentage of labels for bad quality (i.e., perceptibe clipping
distortion, packet loss, or substantial background noise), no
voice, and good quality are 62.5%, 8.5% and 29%, respec-
tively. This distribution of labels on this subset of the corpus
demonstrates how challenging this data set is due to the
poor audio quality in the majority of the responses. The
quality of transcriptions was also checked by computing the
Levenshtein distance between transcriptions from different
independent transcribers for the same utterance, i.e., calcu-
lating the word error rate by assuming that one transcription
is the reference and the second one is a recognition hypothe-
sis. This analysis again demonstrates the challenging nature
of this data set: the average inter-transcriber WERmeasured
on 1,004 utterances / 10,288 tokens was 38.3%. This corpus
is hereafter referred to as the job interview task (JIT) corpus.

Two additional corpora were used to build the ASR
system. One is drawn from a large-scale global assessment
of English proficiency that measures a non-native speaker’s
ability to use and understand English at the university level.
The speaking tasks in this assessment elicit monologues
of 45 or 60 seconds in duration; example tasks include

expressing an opinion on a familiar topic and summarizing
information presented in a lecture. This corpus contains over
800 hours of non-native spontaneous speech covering over
100 L1s (native languages) across 8,700 speakers and is
hereafter referred to as the non-native speech (NNS) corpus.

Another corpus was collected using the HALEF SDS via
crowdsourcing for a range of conversation-based language
learning applications (including the job interview task, but
with no data overlapping with the JIT corpus). This corpus
is collected under realistic usage conditions; the acoustic
environments and speaking styles match those in the JIT
corpus. This corpus contains 41,185 utterances (roughly 50
hours) draw from five language learning tasks (about 37%
of the responses from the job interview task) and is hereafter
referred to as the SDS corpus.

5.2 ASR System

ASR systems were constructed using the Kaldi toolkit
[38]. A GMM-HMM was first trained to obtain senones
(tied tri-phone states) and the corresponding aligned frames
for DNN training. The input feature vectors used to train
the GMM-HMM contain 13-dimensional MFCCs and their
first and second derivatives. Context-dependent phones, tri-
phones, were modeled by 3-state HMMs and the pdf of
each state was represented by a mixture of 8 Gaussian
components. The splices of 9 frames (4 on each side of
the current frame) were projected down to 40-dimensional
vectors by linear discriminant analysis (LDA), together
with maximum likelihood linear transform (MLLT), and
then used to train the GMM-HMM by using maximum
likelihood estimation. Concatenated MFCC features and i-
vector features were used for DNN training. The input
features stacked over a 15 frame window (7 frames to either
side of the center frame for which the prediction is made)
were used as the input layer for the DNN. The output layer
of the DNN consists of the senones of the HMM obtained
by decision-tree based clustering. The input and output
feature pairs were obtained by frame alignment for senones
with the GMM-HMM. The DNN has 5 hidden layers, and
each layer contains 1,024 nodes. The sigmoid activation
function is used for all hidden layers. All the parameters
of the DNN were first initialized by pre-training, then
trained by optimizing the cross-entropy function through
back-propagation (BP), and finally refined by sequence-
discriminative training, state-level minimum Bayes risk
(sMBR).

5.3 BLSTM-RNN Configurations

BLSTM-RNNs with acoustic features, subphone/phone
posteriorgrams or ASR hypotheses as input features and
semantic labels as output nodes are constructed using

812 J Sign Process Syst (2020) 92:805–817



the Keras Python package2. 15% of the training data is
randomly selected to tune the parameters of the BLSTM-
RNN and avoid overfitting by using early stopping. The
structures of the BLSTM-RNNs are configured for the three
different sets of input features as follows.

5.3.1 Acoustic Features

The input acoustic features to the BLSTM-RNN are 26-
dimensional Mel-frequency filterbanks (computed with a 25
msec. window, shifted every 10 msec.) without delta fea-
tures or stacked frame window since the RNN architecture
already captures long-term temporal dependencies among
all sequential events. Silence segments at the beginning and
end of utterances are deleted with an energy-based voice
activity detection (VAD) module.

A two-layer BLSTM with 256 nodes for the first layer
and 128 nodes for the second layer is employed. A layer
with 400 nodes is used to compute the embedding from
encoder layers. We unfolded encoder RNNs for 10 seconds
or 1,000 time steps (frames) where 10 seconds is the median
length of utterances in our corpus. Depending upon the
length of the utterance, features are either padded with
zeros at the end or down-sampled to 1,000 frames. A
back-propagation through time (BPTT) learning algorithm
is used to train the BLSTM-RNN parameters. A 400-dim
embedding vector is then fed into a feed-forward NN with
two hidden layers (each layer with 128 nodes) to predict
semantic labels. All parameters of the NN are trained by
optimizing the cross-entropy function through BP.

Two hidden layers, each layer with 128 nodes, are used
for multitask learning with a feedforward NN. The input
layer of the NN is the 400-dimensional V and the output
layer of the NN has 15 nodes separated by four tasks.
All parameters of the NN are trained by optimizing cross-
entropy function through BP. The parameters in the hidden
layers are updated by using all data in the training set of the
JIT corpus while the corresponding dialog state dependent
data is used to update the parameters in the top layer of the
NN.

5.3.2 Subphone/Phone Posteriorgrams

A subphone/phone posteriorgram of an utterance is a
time sequence of vectors, or equivalently, a 2D tensor
(with a shape of # frames × # subphones/phones). We
construct a tensor with a 100 × 3,686 shape for subphones
(senones) or a 300 × 348 shape for phones (word-position-
dependent phones) by resampling each spoken utterance
into a fixed number of frames, i.e., 100 for subphones and
300 for phones, as the input for BLSTM-RNN training. The

2https://keras.io

structure of the BLSTM-RNN is configured as 32 LSTM
cells, a rectified linear unit (ReLU) activation function and
a one-half drop-out rate (p=0.5); a categorical cross-entropy
loss function and Adadelta optimizer is used in training.

5.3.3 ASR Hypotheses

The input ASR hypothesis sequence is similarly converted
to a 2D tensor which is fed into a stacked BLSTM-RNN and
then formalized as a vector to predict the semantic labels by
the softmax output layer. The structure of the BLSTM-RNN
is the same as that of the subphone/phone posteriorgram
except that the input is a tensor with a shape (50 × 300),
in which the maximum number of recognized words in
an utterance is 50 and the dimension of word embedding
vectors is 300, as trained from the Google News corpus3.

We also use a bag of words model as a feature for training
the semantic utterance classifier. In this model, a text string
(the ASR recognition hypothesis) is represented as a vector
based on the frequency of occurrence of each word. Dialog
state-dependent models are trained to perform multi-class
classification using bag of words features.

5.4 BLSTM-RNN Fusion

We tried a range of different classification models including
Support Vector Machine (SVM), Random Forest, Logistic
Regression, AdaBoost Decision Trees, etc., that are
provided in the SKLL toolkit4 to perform score-level fusion.
In this process, the semantic label posteriors generated from
each of the three BLSTM-RNN models are used as the
input to a classifier to predict a final semantic label for
the utterance. The hyperparameters of these classifiers were
optimized by SKLL internally using cross-validation on the
training data. We also tried a more straightforward approach
in which the three BLSTM-RNNs were concatenated and
MLP layers were added on top to predict the final semantic
labels. In addition, we also explored feature-level fusion and
a single, hierarchical BLSTM-RNN using all of the input
types as comparison approaches.

5.5 Experimental Results

The performance of different ASR systems, in terms of
WER, on the test set from the JIT corpus is shown in Table 3.
The WERs are broken down by dialog state as well as those
of overall (All) and the reference (Ref), which are tested
on the matched data sets. The state-of-the-art DNN-based
ASR trained on the Fisher corpus [39] using Kaldi can
achieve 22.2% WER on its own testing set [40]. Although

3https://code.google.com/archive/p/word2vec
4https://github.com/EducationalTestingService/skll
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Table 3 WER(%) by dialog state of ASR systems built with different
corpora.

Dialog State PF WE SG MT All Ref

Fisher 86.4 88.8 84.2 90.9 88.1 22.2

NNS 54.3 62.6 52.0 54.8 55.5 18.5

SDS 35.4 55.8 45.0 55.1 49.4 N/A

NNS+SDS 35.8 50.1 39.5 46.1 43.5 N/A

the Fisher corpus is a collection of conversational telephone
speech, it still exhibits a significant mismatch to the speech
collected in the SDS corpus and results in a very high WER.
The DNN-based ASR system with i-Vector based speaker
adaptation technology trained on the NNS corpus (which is
also a collection of non-native speakers’ speech), can obtain
WERs of 18.5% and 23.3% on monologic and dialogic
data sets, respectively, using LM interpolation technology
to compensate for the speaking style difference across tasks
[41]. However, when it is applied to recognize the data
collected from the SDS application, the WER is degraded to
55.5% even when transcriptions from the training set of the
JIT corpus are used for language model adaptation. Using
data collected by the SDS application or combining the
NNS corpus with the SDS corpus can significantly improve
the ASR performance: the WERs on the JIT test set are
reduced to 49.4% and 43.5%, respectively. While this is
still a very high WER value, it should be considered in
light of the fact that the average inter-transcriber WER is
also quite large at 38.3%, as reported above. Reducing both
the ASR and inter-transcriber WERs for such data will be
important steps for improving system performance in real-
world environmental conditions and use cases, and pose
an interesting challenge to the speech processing research
community going forward.

Table 4 shows the SLU performance in terms of semantic
prediction accuracy obtained by different SLU systems. The
ASR-free E2E system, i.e., the BLSTM-RNN with acoustic

Table 4 Accuracy(%) of different SLU systems.

Dialog State PF WE SG MT All

Majority Vote 53.6 79.4 45.7 70.3 59.8

E2E(JIT) 57.4 80.3 54.2 76.1 65.4

E2E(Pre) 64.3 83.0 55.7 77.5 68.9

E2E(Pre,Multi-task)(a) 66.3 83.3 62.2 76.8 70.6

Subphone(b) 88.4 88.2 70.7 82.6 82.1

Phone 86.5 86.7 72.4 83.5 81.9

RF(BOW) 85.2 89.3 68.7 63.4 78.5

BLSTM-RNN(WE)(c) 89.5 89.2 77.4 85.5 85.1

Fusion(a+c) 90.6 90.2 78.0 85.5 85.8

Fusion(a+b+c) 90.6 93.1 79.3 87.0 87.0

features as input, performs much better than the majority
vote baseline with an improvement from 59.8% to 70.6%,
and there is no performance degradation for any of the
dialog states. These results demonstrate that an ASR-free
SLU is promising in situations with low ASR accuracy.
We conjecture that the performance of an ASR-free SLU
will be further improved if more training data is available.
The acoustic features extracted from the NNS and SDS
corpora are used to train the BLSTM-RNN auto-encoder
in the sense of unsupervised learning. The SDS and NNS
corpora can cover a large amount of acoustic variations
and the V extractor trained on them with pre-training can
yield superior discrimination for semantic classification.
The overall accuracy of E2E(Pre) is improved by 3.5%,
compared with that of E2E(JIT), where the V extractor is
trained on the JIT corpus; the PF (Part or Full) dialog state
achieves the largest gain among the four dialog states and
shows an accuracy improvement of 6.9%. The multi-task
learning approach can learn the commonalities among the
different dialog states and further boost the overall accuracy
(All) of semantic labeling from 68.9% to 70.6%.

Using the subphone posteriorgrams instead of acoustic
features as the input to the BLSTM-RNN results in an
improvement in semantic labeling accuracy (All) of 11.5%,
from 70.6% to 82.1%, when compared with the E2E(Pre,
Multi-task). The BLSTM-RNN using phone posteriorgrams
as input can achieve similar semantic labeling labeling but
with a much smaller (3.5 times smaller) input matrix. Phone
posteriorgrams can be regarded as the posterior trajectories
of phones in the phone set and represent a compact search
space for the final speech recognition outputs with the
LM. It has been shown that a phonetic lattice search can
compensate for some of the information lost due to OOV
words and improve the efficiency of information retrieval
from spoken documents [43] and keyword spotting in
large speech databases [42]. SLU in a certain sense can
be considered as a special case of information retrieval
or keyword spotting and a similar phenomena is possibly
observed for SLU with the subphone/phone posteriorgram,
which is equivalent to a subphone/phone lattice with
posteriors assigned to each subphone/phone.

The conventional SLU approach, i.e., using ASR
hypotheses as input for predicting the semantic label,
can achieve 78.5% accuracy by using a Random Forest
(RF) classifier a with Bag-of-Words (BOW) model, and
85.1% accuracy by using a BLSTM-RNN model with word
embeddings (WE). The RF classifier with the BOW input
achieves the best performance on semantic labeling among
all the classifiers provided by SKLL. We think the benefits
of using a BLSTM-RNN model with word embeddings
for SLU come from two aspects: a) semantically similar
words have similar word embedding vectors while the bag
of words uses the same representation for the semantically
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similar and dissimilar words; b) the BLSTM-RNN can
capture long contextual information in both the forward
and backward directions while the BOW model cannot
tell the position of the word in a sentence, i.e., it cannot
differentiate between sentences that contain the same words
but in different orders.

The performance of different fusion methods is listed in
Table 5. All fusion methods can improve the performance
in terms of the accuracy of predicted semantic labels
comparing with the performance of BLMSTM models
with a single input type. The accuracy achieved by
different fusion methods ranges from 86.2% to 87.0%,
i.e., the performance of our employed fusion methods is
not significantly different for this task. Among all these
classifiers for the score-level fusion, the SVM classifier
achieved the highest accuracy for semantic label prediction.
The MLP method, i.e., concatenating three BLSTM-RNNs
as MLP inputs to predict the final semantic labels, slightly
under-performed the SVM classifier. Table 5 also shows
that neither of feature-level fusions (a single or hierarchical
BLSTM-RNN using all of the input types) outperformed
the score-level fusion model with the SVM classifier.
The classifiers provided by the SKLL toolkit train the
fusion model by using all training data and optimize the
hyperparameters using cross-validation while the neural
network-based fusion methods have to separate 15% of
the training data as a development set for tuning the
hyperparameters due to their characteristics. We conjecture
that the slightly inferior performance achieved by the neural
network-based approaches is caused by the factor that the
parameters in the trained model for fusion do not have full
coverage of the statistics in the training data set.

The best fusion result in Table 5 is added into Table 4
as a comparison to those results without fusion. It indicates
that acoustic features, subphone posteriorgrams and ASR
word hypotheses have non-overlapping information and can
compensate for each other in semantic tagging. The score-
level fusion by using the posteriors output from the three
RNNs can further improve the semantic labelling accuracy
from 85.1% to 87.0%. It is enlightening to find that the
performance can be improved by different combinations

Table 5 Accuracy(%) of fusion with different methods.

Fusion Score-level Feature-level

Support vector machine 87.0

Random forest 86.8

Logistic regression 86.4

AdaBoost decision tree 86.5

MLP 86.7

Single BLSTM-RNN 86.2

hierarchical BLSTM-RNN 86.6

of BLSTM-RNNs. For example, both fused systems,
i.e., filterbanks and ASR words (a+c) and filterbanks,
posteriorgram and ASR words (a+b+c), can achieve a better
performance than that of each individual system.

5.6 Analysis and Discussion

The best performance of the BLSTM-RNN model using
word embeddings is only 3.0% better than that predicted
from subphone posteriorgrams (85.1% compared to 82.1%).
In other words, the SLU model based on subphone
posteriorgrams without using an LM trained on manual
transcriptions for new application data can perform almost
as well as the traditional ASR-based baseline in terms of
semantic classification performance. We observed that the
lower the ASR WER, the higher the accuracy of the SLU,
as expected. When the ASR system was built only using the
SDS corpus, the WER on the test set from the JIT corpus
increases to 49.4% and the corresponding accuracy of
semantic labeling degrades to 81.3%. It is interesting to note
that the SLU model trained on manual transcriptions does
not outperform the SLU model trained on the hypotheses
produced by ASR system. We suspect that this might be
due to inconsistencies and ambiguities present in the human
transcriptions (due to the low intelligibility of the speech).

One of motivations for using acoustic filterbank features
and subphone posteriorgrams is to investigate their possible
advantages for the case of OOV words which cannot be
recognized by the ASR system. 131 out of 586 utterances
in the test set contain OOV words. The average tagging
accuracy for the utterances with/without OOVs is shown
in Table 6. The model based on subphone posteriorgrams
outperforms the model based on ASR hypotheses for OOV
utterances, i.e., the tagging accuracy is improved from
78.2% to 80.4%. However, for the utterances without
OOV tokens, the relative ranking of tagging accuracies is
reversed, i.e., 87.1% for using ASR hypotheses vs 82.6%
for using senone posteriors. The performance gap between
the utterances with OOV tokens and without OOV tokens
is much larger for using ASR hypotheses than for using
filterbanks and posteriorgrams. The fusion results also show
that tagging performance can be boosted more for the
utterances with OOV tokens, from 78.2% (ASR hypotheses)
to 83.0% (a+b+c fusion), than for the utterances without
OOV tokens, where only a marginal improvement of 1.1%

Table 6 Performance (average tagging accuracy) of the utterances w/
and w/o OOV.

(a)Filter (b)Posterior (c) ASR Fusion

banks gram Words a+b+c

with OOV 69.1 80.4 78.2 83.0

w/o OOV 71.0 82.6 87.1 88.2
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is obtained, i.e., from 87.1% (ASR hypotheses) to 88.2%
(a+b+c fusion). In a conversation-based dialog system
eliciting spontaneous speech where OOV tokens can be
common, the performance of the final SLU predictions can
therefore be enhanced by incorporating the features from the
acoustic and phonetic levels for semantic labeling.

6 Conclusions

In this paper, we have investigated the performance
of spoken language understanding in a human-machine
conversation-based language learning system. Three bi-
directional LSTM-RNNs were employed for end-to-end
modeling of the relationships between the utterance
semantics and sequential information extracted from three
different levels of granularity as follows: filterbanks at the
acoustic level, posteriorgrams at the subphonemic level,
and recognized words produced by the ASR system at the
lexical level. The models were evaluated on a crowdsourced,
spoken dialog speech corpus containing speech produced
by non-native speakers of English in a job interview task.
Experimental results show that the end-to-end modeling
approach is particularly promising in situations with low
ASR accuracy and that the accuracy of semantic labeling
can be further improved with a score-level fusion approach
combining the output from the three individual RNNs. In
the future, we will use more speech data for testing the
learning and interpolation capability of BLSTM-RNNs to
further improve SLU performance.
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