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Abstract
Rapid Automatized Naming (RAN) is a powerful tool
for predicting future reading skill. A person’s ability
to quickly name symbols as they scan a table is related
to higher-level reading proficiency in adults and is pre-
dictive of future literacy gains in children. However,
noticeable differences are present in the strategies or
patterns within groups having similar task completion
times. Thus, a further stratification of RAN dynamics
may lead to better characterization and later interven-
tion to support reading skill acquisition. In this work,
we analyze the dynamics of the eyes, voice, and the
coordination between the two during performance. It
is shown that fast performers are more similar to each
other than to slow performers in their patterns, but not
vice versa. Further insights are provided about the pat-
terns of more proficient subjects. For instance, fast per-
formers tended to exhibit smoother behavior contours,
suggesting a more stable perception-production process.
Index Terms: Rapid Automatized Naming (RAN),
reading strategies, eye-tracking, multi-modal,
production-perception

1. Introduction
In the Rapid Automatized Naming (RAN) task, a par-
ticipant is presented with a grid of 36 familiar stimuli
(drawn from sets of six letters, numbers, colors, or ob-
jects) and must name them aloud as quickly and accu-
rately as possible in order of appearance [1]. RAN per-
formance is used to diagnose childrens reading disorders
[2], predict their future literacy gains [3], and to charac-
terize reading ability in adults [4, 5].

The predictive power of the RAN task likely results
from its similarity to reading in terms of the demands
associated with sequential processing of simultaneously
presented stimuli, as there is little to no relationship be-
tween single item naming and reading skill [6, 7]. RAN
performance depends heavily on sustained attention as
shown by its relation to performance on other attention-
demanding tasks [5]. In the RAN task, sustained at-
tention is required in order to closely coordinate eye-
movements, perceptual encoding, working memory, lex-
ical processing and vocal execution, much like reading.

In order to control working memory load while op-
timizing overall speed, the encoding of each item in the
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array must be timed closely with its vocal response. Per-
ceptual encoding of an item requires less time than its
vocalization, allowing eye fixations to move ahead of the
vocal sequence across items. More importantly, differ-
ent stages of processing (encoding, lexical retrieval, vo-
calization) may take place in parallel across two or more
sequential items, so that an efficient strategy involves
the eyes leading the voice. However, this eye-voice dis-
crepancy is limited by working memory and attentional
demands resulting from simultaneously processing mul-
tiple items. As such, fast RAN performance depends on
the control of eye movements in coordination with the
voice stream in a way that does not overload working
memory.

To date, the only metric of RAN performance is total
completion time. However, this is a gross measure that
does not detail events that led to the outcome. Specifi-
cation of the precise skills supporting RAN performance
may contribute to our understanding of causal factors of
individual differences in reading achievement and abil-
ity, allowing for tailored intervention. Characterization
of the patterns of eye-voice coordination that consti-
tute optimal RAN performance requires joint analysis
of both data streams.

Contributions of this work in the context of related
prior work lie in three facets. First, little or no work at-
tempts to model patterns of the RAN task, likely due to
the complex nature of the perception-production dynam-
ics. Although theoretical models of reading processes
exist [8], they were not designed for RAN. A primary
contribution of this novel work is to formulate the RAN
dynamics such that signal processing can be employed.
Second, other work has applied machine learning to eye-
tracking data, for example to locate areas of interest [9]
or to classify user intent [10]. In contrast, the current
task does not use absolute duration features and has dif-
ferent task goals, and thus requires different methodol-
ogy. Finally, this analysis complements other studies
of human behavior [11, 12, 13]; like some such studies
[14], we plan to examine cognitive processes of chil-
dren with autism using collected RAN data, now that
methods to establish normal patterns have begun to be
explored.

2. Experimental Design
We investigate patterns in eye-tracking and voice sig-
nals of subjects performing Rapid Automatized Naming
(RAN) subtasks, in an effort to understand how channel
coordination effects completion time.



Figure 1: ‘Objects’ prompt and sample eye-tracking.
Eye-tracking is visualized as red circles with diameter
representative of fixation duration, and by connecting
lines representing saccades between fixations.
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Figure 2: Example eye-voice trace with eye fixations
in green and vocal productions in blue for each word.

2.1. Corpus

The UNC RAN Corpus consists of 30 performers in 4
RAN subtasks: Objects, Colors, Numbers, and Letters.
Each subtask is performed twice. We focus our study
on the 22 subjects for whom we have eye-tracking and
vocal data for all 8 trials.

Each RAN task is comprised of 36 symbols, ar-
ranged in 4 rows and 9 columns as in Figure 1. Eye-
tracking data is collected using an Eye Link 1000 by SR
Research. The output of the eye-tracking is a set of fix-
ation (x,y) positions and durations. The fixated symbols
are then automatically determined from the (x,y) posi-
tion with algorithms designed to lessen fixations on one
row being mis-assigned to an adjacent row.

The subject reads aloud while parsing the list of
symbols left-to-right and top-to-bottom. The start and
end times of each vocalization are recorded automat-
ically using forced aligment, and then manually cor-
rected. In Figure 2, the fixated word and vocalized word
are plotted over time. We can see that the eyes almost
always lead the voice, but the coordination between per-
ception and production is variable.

We remove the first word in the list because the per-
former is often in a very unstable state. In the rare case
that fixation data are absent due to possible collection
error, we use KNN imputation to complete the data.

2.2. Eye-Tracking and Voice Signals

The temporal patterning of both the visual and voice
data streams, as well as the relationship between them
(eye-voice lead) are modeled. The eye and voice signals

in Figure 2 can be considered to represent the observable
state sequence of a finite state machine. These state se-
quence observations can be approximately summarized
by reformulating the signal such that each item, or sym-
bol in order, is considered a point in time and the value
corresponds to a duration for that item. We consider
three rich feature contours: the total fixation duration
on each item; the total pause+vocalization duration for
each item; and finally eye-voice lead, the duration be-
tween when the eye first observes an item and when that
item is spoken.

It is critical that the descriptors of each RAN trial are
decorrelated with the trial’s total completion time. Many
of the absolute values of these state-sequence-based sig-
nals are initially correlated with that same completion
time. For example, mean item pause+vocalization du-
ration and mean total fixation duration on an item are,
as expected, highly correlated with the total completion
time of a list. Thus, the particular solution we employ
is to normalize each feature contour to have unit magni-
tude. This is equivalent to seeking the percentage contri-
bution of each item’s value towards creating the cumu-
lative observation– e.g., the normalized pause+vocal du-
ration feature contour represents the percentage of time
spent pausing-before and speaking each symbol. One
aspect of this approach is that regressions are not explic-
itly modeled; however, regressions are implicitly mod-
eled since they will contribute to the recorded duration
of the word from which the regression happens.

Normalized feature contours are shown in Figure
3. The greatest variability often occurs near a line
change, except for the eye duration signal which is
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Figure 3: Signals from two subjects performing Numbers subtask. The vertical blue lines designate ends of rows.



less consistent in this trend. Faster performers tend to
have smoother feature contours that vary less and more
slowly.

3. Analysis of Eye and Voice Patterns
Fast speakers may exhibit behaviors that further stratify
effective automatized naming skills. The following ex-
periments investigate these potential patterns by quanti-
fying interpretable trends in the eye and voice signals.
In Section 3.1 we find support for the existence of com-
mon behaviors of fast performers; in Section 3.2 signal
smoothness is quantified; and in Section 3.3 we investi-
gate item-level behaviors.

3.1. Existence of Performance Patterns
Proficient performers may share certain qualities that
can be observed in the dynamic patternings of the eye-
voice lead, pause+vocal duration, and total fixation du-
ration signals. Methods presented in this section can
evaluate the potential similarities of performers with
comparable speeds.

Exemplar-based templates can be generated per task
using the fastest (or slowest) subjects that may show
how the fastest (or slowest) subjects process each task.
Templates are generated by taking the fastest (or slow-
est) performers feature contours and averaging– thus we
are searching for a single common component in the
patterns to support the utility of further analyses. As a
measure of similarity, we use the L-1 norm between the
template and the patterns of each remaining performer.
These distances can then be compared to the completion
time using Spearman’s-rank correlation (Table 1).

Table 1: Distance from exemplar-based templates as a measure
of a subject’s performance style, using Spearman’s correlation.
Bold and ∗ indicate significance at α=0.05 and α=0.10 levels,
respectively.
Category Object Color Number Letter
Modeling Each Subtask Separately- Fast Performer Exemplars
Eye-Voice .35 .50 .30∗ .15
Pause+Vocal .42 .49 .13 .10
Fixation .27∗ 0.05 .13 .14
Modeling Each Subtask Separately- Slow Performer Exemplars
Eye-Voice .12 -.08 .11 .12

Modeling Each Trial Separately- Fast Performer Exemplars
Trial 1 2 1 2 1 2 1 2
Eye-Voice .47 .50 .17 .66 .36 .03 .38 -.03

First, analysis is conducted on the signal patterns
that occur without regard to the symbol-order, since both
item-randomized trials are included in the same analy-
sis. The four fastest trials are used to generate a template
for each subtask. One interesting finding is that there
are many significant and marginally-significant correla-
tions that occur in the hypothesized direction; fast per-
formers are more like other fast subjects than are slow
subjects, even in these signals that which total dura-
tion information removed. Second, the eye-voice lead
and pause+vocalization duration feature contours lead to
higher correlations than the eye duration feature contour.
Another observation is that the correlations are stronger
for Objects and Colors subtasks. Objects and Colors

subtasks are often analyzed separately from Numbers
and Letters subtasks because the cognitive load is much
lower for the latter (i.e., completion times are nearly half
those of the former).

Next, we explore whether slow performers tend to
display a common pattern and strategy or if there are
varied, idiosyncratic processing difficulties among slow
speakers. For the eye-voice feature contour– which
provided the most significant results for fast-performer
templates– slow subjects are not found to be more
closely related to slow-performer exemplars, than fast-
performers. This is tentative evidence that slow per-
formers have varied factors contributing to reduced per-
formance.

Lastly, we consider if incorporating the symbol-ID
by examining trials individually will improve the cor-
relations over subtask-level analyses. No consistent
improvement is observed in the correlation values dis-
played in the last row of Table 1 when using the three
fastest performers as exemplars. This may indicate that
the actual symbol is not a significant factor, but more
critical is the position of the item in the 2-D grid. For
example, difficulty may arise near row boundaries.

3.2. Pattern Stability
Having established that some useful information is
present in the dynamic patterns of these contours, it
is desirable to further quantify such patterns. Speech
from faster performers seems confident and their pace
appears steady. In this sub-section, an informative mea-
sure that quantifies the potential lack of such temporal
predictability in slower performers is examined.

Our method to measure the roughness (lack of
smoothness) in a signal is to compute the standard de-
viation of the first-order difference (∆) of the contour;
the difference operator is a high-pass filter. We hy-
pothesized that faster readers would show more stabil-
ity, which should result in less variable, more stationary
contours. In our case, the signals are not varying over
actual time, but over item number (2-36).

Table 2: Spearman’s correlations between ‘roughness’ and to-
tal completion time. Bold indicates significance at α=0.05.

Category Object Color Number Letter All
Eye-Voice .59 .40 .36 .42 .44
Pause+Vocal .49 .49 .19 .33 .35
Fixation .31 .07 .20 .27 .21

Results of correlating the standard deviation of the
difference signal with the completion time (shown in
Table 2) indicate a relationship between contour rough-
ness and task speed. This is especially bourne out from
the eye-voice lead signal measurements– the less pre-
dictable the item-to-item changes in eye-voice lead time,
the slower a subject tends to be. One possible explana-
tion is that slower performers have difficulty coordinat-
ing the internal flow of information between the visual
and vocal channels. However, we performed one more
test in which we computed a second feature, the standard
deviation of the contours without the difference opera-
tor. We find that the two features are highly correlated
(Spearman’s ρmin=0.87, ρmax=0.98). This indicates
that the variability we see in the signal is spurious, high-
frequency variability and that the contours are very non-



stationary. In essence, lack of a flat contour is equiva-
lent to lack of a smooth contour, and both imply lack of
steadiness. Beyond simply quantifying the mean rate of
observable signals, we have found explanatory power in
the rhythm of the observable signals.

3.3. Location-Dependence of Channel Coordination
As previously observed, item-position is a critical factor
in determining how a subject controls the perception-
production mechanisms. This effect is especially evi-
dent at the end and beginning of a row, where a slower
subject may struggle because of the long saccade re-
quired to start at the next row as shown in Figure 3.

The relative percentage of time each of the three
signals (eye-voice lead, pause+vocal duration, and to-
tal fixation duration) attribute to each item may indicate
deviations in strategies employed by subjects of differ-
ing abilities (Figure 4). Spearman’s rank-correlation be-
tween these percentages and completion time reveals a
consistent trend near row boundaries for the eye-voice
lead signal– shown in Table 3.
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Figure 4: Correlations per-item for the Numbers task.
Dotted lines indicate significance at α=0.10 level.

Table 3: Eye-voice trends at end of rows. Bold and ∗ indicate
significance at α=0.05 and α=0.10 levels, respectively.

Category Object Color Number Letter
Row 1 -.22 -.27∗ -.32 -.28∗

Row 2 -.04 -.38∗ -.31 -.27∗

Row 3 -.06 -.08 -.27∗ .05
Row 4 -.14 -.38 .06 -.07

An interesting finding is that for faster performers,
the amount of relative eye-voice lead for the last item in
a row is higher than for slower performers. Eye-voice
lead may increase for several reasons. For example, it
may be larger if a person is storing more symbols in
their decoded-symbol buffer which is only necessary if
the person also decoded quickly; on the contrary, it is
also larger if the person is pausing longer before saying
a word. The eye-voice lead time tends to decrease for
fast and slow speakers within a row, and often appears
to reach a minimum at the end of the row. This may im-
ply that subjects are approaching an equilibrium or peak
speed. The last item in the row is the location most con-
sistently observed for the trends under focus. It should
be noted that look-ahead is typically 1-2 symbols.

Taking all factors into account, it is possible that the
faster subjects are maintaining their buffer of visual in-
formation more effectively near the end of a line, and

thus are better equipped to maintain pace after chang-
ing rows. Although these results are inconclusive, the
evidence is consistent enough such that it may inspire
further studies to understand this process more clearly.

4. Classification Task and Discussion
Measures relating to the common pattern between fast
performers (3 features), to the smoothness (or lack
thereof) of three contours (3 features), and to the rel-
ative row-end eye-voice lead (4 features) hold informa-
tion about the total completion time for the subject, even
though these measures have been normalized for total
time. To further demonstrate that the created features are
informative, we perform binary classification of reading
speed as determined by the median speed per subtask.
Since some trials are required for fast-performer tem-
plates, we classify the remaining 40 trials per subtask.
Classification is performed using linear SVM [15]. The
10 features are further reduced by feature-selection with
Fisher scoring [16]. Results are presented in Table 4.

Table 4: Classification of performers grouped by speed.
Category Object Color Number Letter All
Accr. 60% 68% 65% 60% 63%

Classification accuracies of 60-68% are achieved.
63% classification accuracy on the 160 samples is sig-
nificantly above chance (p<0.01). The accuracies are
also consistent across tasks, even for the tasks with
lower cognitive-load. The accuracy is as-expected based
on the 0.4 correlations for many features, and still inter-
esting given we are only considering RAN dynamics,
which have not yet been studied.

5. Conclusion
In this work, we modeled the dynamics of the eyes,
voice, and the interaction between the two during per-
formance of a task that is strongly related to reading
ability. We find fast performers are more similar to each
other than to slow performers in their patterns, but not
the other way around. With this supporting evidence, we
sought to quantify the patterns of an efficient performer.

A major finding is that faster subjects show smoother
patterns in all three signals than slower subjects. One
possible explanation is that slower performers have dif-
ficulty coordinating the internal flow of information be-
tween the visual and vocal channels, and have more dif-
ficulty than faster performers in increasing their look-
ahead near line-end in preparation for a line switch. Val-
idation of the proposed measures was obtained through
classification tasks.

Thus, beyond simply quantifying the mean rate of
observable signals, we found explanatory power in the
rhythm of the observable signals, as well as other de-
scriptors. Such insights may lead to better stratification
of optimal reading strategies, and thus to tailored inter-
vention.

We also observed that some speakers employ chunk-
ing strategies; in particular, they perceive and produce
3-4 words at a time. In the future, the observed lo-
cal ”rhythm” differences will be explored. Additionally,
behaviors from a large corpus of children with autism
spectrum disorders (ASD) will be analyzed.



6. References
[1] M. B. Denckla and R. Rudel, “Rapid automatized naming of pic-

tures objects, colors, letters and numbers by normal children.,”
Cortex, vol. 10, pp. 186–202, 1974.

[2] P.G. Bowers, “Tracing symbol naming speeds unique contribution
to reading disabilities over time.,” Reading and Writing, vol. 7, pp.
189–216, 1995.

[3] National Early Literacy Panel, Developing Early Literacy: Re-
port of the National Early Literacy Panel. Executive Summary.,
Washington, DC: National Institute for Literacy., 2008.

[4] H. L. Swanson, G. Trainin, D. M. Necochea, and D. D. Hammill,
“Rapid naming, phonological awareness and reading: A meta-
analysis of the correlation evidence.,” Review of Educational Re-
search, vol. 72, pp. 407–440, 2003.

[5] K. M. Arnell, R. Klein, M. F. Joanisse, M. A. Busseri, and R. Tan-
nock, “Decomposing the relation between rapid automatized
naming (ran) and reading ability.,” Canadian Journal of Exper-
imental Psychology, vol. 63, pp. 173–184, 2009.

[6] C. A. Perfetti, E. Finger, and T W. Hogaboam, “Sources of vocal-
ization latency differences between skilled and less skilled young
readers,” Journal of Educational Psychology, vol. 70, pp. 730–
739, 1978.

[7] K. E. Stanovich, “Relationships between word decoding speed,
general name-retrieval ability, and reading progress in first-grade
children,” Journal of Educational Psychology, vol. 73, pp. 809–
815, 1981.

[8] Alexander Pollatsek, Erik D. Reichle, and Keith Rayner, “Tests
of the ez reader model: Exploring the interface between cognition
and eye-movement control,” Cognitive Psychology, vol. 52.1, pp.
1–56, 2006.

[9] L. Itti and P. F. Baldi, “Bayesian surprise attracts human atten-
tion,” in Advances in Neural Information Processing Systems,
Vol. 19 (NIPS*2005), Cambridge, MA, 2006, pp. 547–554, MIT
Press.

[10] Kai Puolamki and Samuel Kaski, Eds., Proceedings of the NIPS
2005 Workshop on Machine Learning for Implicit Feedback and
User Modeling, 2006.

[11] Shrikanth S. Narayanan and Panayiotis G. Georgiou, “Behavioral
signal processing: Deriving human behavioral informatics from
speech and language,” Proceedings of the IEEE, 2012.

[12] Matthew P. Black, Athanasios Katsamanis, Brian R. Baucom,
Chi-Chun Lee, Adam C. Lammert, Andrew Christensen, Panayio-
tis G. Georgiou, and Shrikanth S. Narayanan, “Toward Automat-
ing a Human Behavioral Coding System for Married Couples’ In-
teractions Using Speech Acoustic Features,” Speech Communica-
tion, 2011, In Press.

[13] C.C. Lee, A. Katsamanis, M.P. Black, B.R. Baucom, P.G. Geor-
giou, and S.S. Narayanan, “An Analysis of PCA-based Vocal
Entrainment Measures in Married Couples’ Affective Spoken In-
teractions,” in Proceedings of Interspeech, 2011.

[14] Daniel Bone, Matthew P. Black, Chi-Chun Lee, Marian E.
Williams, Pat Levitt, Sungbok Lee, and Shrikanth Narayanan,
“Spontaneous-speech acoustic-prosodic features of children with
autism and the interacting psychologist,” in Proceedings of Inter-
speech, 2012.

[15] Chang, Chih-Chung and Lin, Chih-Jen, “LIBSVM: A library for
support vector machines,” ACM Transactions on Intelligent Sys-
tems and Technology, vol. 2, pp. 27:1–27:27, 2011.

[16] R.O. Duda, P.E. Hart, and D.G. Stork, Pattern Classification, John
Wiley and Sons, New York, 2 edition, 2001.


