Bayesian Inference of State Feedback Control Model Parameters for Pitch Perturbation Responses

JL Gaines1, KS Kim2, B Parrell3, V Ramanarayanan2,4, RB Ivry5, H Kothare4, SS Nagarajan2, JF Houde2
1UC Berkeley-UCSF Graduate Program in Bioengineering, 2Department of Otolaryngology, University of California, San Francisco, 3Department of Communication Sciences and Disorders, University of Wisconsin–Madison, 4Modality.AI, San Francisco, 5University of California, Berkeley

Introduction

- Computational modeling was used to explore the neural mechanisms of speech motor control
- A state feedback control model was used to simulate a participant’s behavioral response to a pitch perturbation experiment
- Bayesian inference was used to determine the set of model parameters most likely to produce a pitch perturbation response matching that described by existing data
- The selected model parameters were compared between patient and control groups

Simulator

- The state feedback control model architecture [1] is shown below. The parameters fit are auditory feedback delay (Aud. Del.), somatosensory feedback delay (Som. Del.), auditory noise covariance (a), the ratio of auditory noise covariance (a) to somatosensory noise covariance (s), controller gain (Ctrl. Gain), and a uniform scaling factor (K) on optimal Kalman gains (M) associated with auditory and somatosensory feedback.

Results

Behavioral Results

- Aud. Del. (ms) vs Som. Del. (ms)
- Aud. Noise Covariance vs Som. Noise Covariance
- Ratio of Aud. to Som. Noise Covariance
- Ctrl. Gain vs Kalman Gain Scaling Factor

Conclusions

- The results suggest that AD and CA patients differ from controls in what is represented in the model as controller gain. This would imply a change in the motor cortex of patients to increase the scale of the behavioral adjustment to a pitch perturbation.
- The results suggest that logopenic variant primary progressive aphasia (lvPPA) patients differ from controls in what is represented in the model as the ratio of auditory to somatosensory noise covariance. This may imply a change in the sensory cortex of patients that affects the relative scale of noise for different feedback modalities, or that affects the relative weight of errors in different feedback modalities (Kalman gains).
- These results generate hypotheses that can be tested with additional speech studies.

References


Acknowledgements

This work was funded by an ARCS (Achievement Rewards for College Scientists) Foundation award (J.H.) and the following grants from the National Institutes of Health (NIH): N01-DC-95208 (R.K.), P41-EB015891 (R.K. and S.N.), R01-DC010879 (J.H. and S.N.), R01-DC000845 (M.L.G.T.), and R01-DC-017991 (J.H. and S.N.).