

JL Gaines¹, KS Kim², B Parrell³, V Ramanarayanan^{2,4}, RB Ivry⁵, H Kothare⁴, SS Nagarajan², JF Houde² ¹UC Berkeley-UCSF Graduate Program in Bioengineering, ²Department of Otolaryngology, University of California, San Francisco, ³ Department of Communication Sciences and Disorders, University of Wisconsin–Madison, ⁴Modality.Al, San Francisco, ⁵University of California, Berkeley

- mechanisms of speech motor control
- A state feedback control model was used to simulate a experiment
- patient and control groups

(Ctrl. Gain), and a uniform scaling factor (K) on optimal Kalman gains (M) associated with auditory and

Bayesian Inference of State Feedback Control Model Parameters for Pitch Perturbation Responses

