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Abstract A variety of tests exist to assess balance, which are usually administered
by a clinician in clinic. This limits how often they can be administered and requires
patients to travel to the clinic, which can often be inconvenient or difficult, especially
in cases involving movement disorders. To address this issue, we evaluate the feasi-
bility of using a multimodal dialog-based platform for remote balance assessment.
The platform uses the participants’ webcams to track their body poses while a virtual
agent guides them through a series of tasks to assess balance inspired by the Berg
Balance Scale (BBS). We recorded 62 assessment sessions from 58 healthy partic-
ipants to evaluate whether participants were able to perform the tasks as instructed
and to evaluate whether the obtained data can be used to automatically extract an-
alytically valid metrics to assess balance. The results show that the assessment is
feasible but participant compliance with instructions is crucial to ensure good over-
all data quality. Furthermore, we show that the time taken to stand from a seated
position (TSS) can be accurately calculated if participants comply with instructions
to perform the task correctly.
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1 Introduction

Balance impairment reduces mobility, independence, and overall the quality of life
of affected people and places a higher burden on caregivers and the health system
(Atteya et al, 2019). Furthermore, postural instability is a major cause of falls for
a variety of neurological conditions, like Parkinson’s Disease (PD) (Wood et al,
2002), Huntington’s Disease (Busse et al, 2009), or Multiple Sclerosis (Coote et al,
2020), leading to twice as many falls in people with neurological conditions than age-
matched healthy controls (Stolze et al, 2004). A variety of interventions exist that can
be applied to reduce the risk of falling, e.g. through exercise or medication (Allen
et al, 2022; Gillespie et al, 2012; Stevens and Lee, 2018), however, this requires
people to be aware that they are having balance problems.

There are several tests that can be used to assess balance, like the BESTest (Horak
et al, 2009), the Fullerton Advanced Balance Scale (Rose et al, 2006), or the Berg
Balance Scale (BBS) (Berg, 1992), which are disease-agnostic, while there are also
a variety of disease specific tests, which include balance related items, like the MDS-
UPDRS (Goetz et al, 2008) for PD. All tests have in common that they are usually
administered by a clinician limiting the frequency in which they can be administered
and causing inconvenience to the patients because they have to travel to a clinic,
which might also require the help of a caregiver.

To address these problems, several studies have investigated the possibility to au-
tomatically conduct balance assessments directly at the patients’ homes and without
the supervision of a clinician. For example, Wei and Dey (2019) employed a force
plate to assess balance through a calculation using the center of mass and pres-
sure. Other studies, e.g. Abujrida et al (2017); Arora et al (2015); Bot et al (2016);
de Lima et al (2016); Lipsmeier et al (2018), avoided the need for special hardware,
such as force plates, through the use of smartphone apps, which utilized the sensors
embedded in smartphones, to monitor progression in PD through a variety of tests
that assessed among other things also gait and balance. While some of the studies
have shown that the collected data can be used to distinguish patients from healthy
controls, the tests are not as comprehensive as the more holistic assessments used by
clinicians, like the BESTest or the BBS, which consist of many everyday tasks and
also evaluate whether someone needs external support, e.g. to stand up or to stand
on one leg.

Recently, Morinan et al (2022) used computer vision to assess balance using the
arising from a chair task of the MDS-UPDRS, which is also part of other assessments
like the BBS. More specifically, a smartphone app was used to record the participant
standing up, afterwards several body landmarks were obtained and used to extract
balance related metrics. Although the task can potentially be done without the
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presence of a clinician, the described study was done in clinic and designed in a way
that a clinician guides and conducts the assessment.

To the best of our knowledge, there have been no studies that have investigated
conducting standard clinical assessments of balance remotely using a virtual agent to
guide the interaction. In this paper, we evaluate the feasibility of using a multimodal
dialog platform, which can be easily accessed through an internet browser without
requiring the installation of any software, to conduct remote balance assessments.
More specifically, we extended the Modality Platform (Ramanarayanan et al, 2023)
with a balance assessment consisting of a number of tasks inspired by the BBS to
answer the following research questions:

1. Is it feasible to administer standard balance assessments used by clinicians, like
the BBS, remotely through a multimodal dialog system?

2. Can the recorded data be used to extract balance related metrics that are analyti-
cally valid?

To this end, 62 assessment sessions were collected from 58 healthy participants. 49
of the participants were recruited via Prolific1, while 9 were internal testers. During
the assessment, participants were guided by a virtual dialog agent, Tina, to perform
a set of tasks inspired by the BBS, although they have been slightly modified for the
purpose of the remote assessment.

The remainder of the paper is structured as follows: Sections 2 and 3 describe
the employed system and integrated balance assessment. The collected data and
performed analyses are presented and discussed in Sections 4 and 5. Finally, Section
6 concludes this paper.

2 System

The virtual agent, Tina, guiding participants through the interactive assessment is
powered by a cloud-based multimodal dialog system (Ramanarayanan et al, 2023)
designed to administer automated screening interviews to detect and monitor neu-
rological and mental health conditions. During the interactive interview Tina guides
participants through a series of structured conversational exercises designed to elicit
speech, facial, and limb motor behaviors while analytics modules automatically ex-
tract a variety of audio (e.g. speaking rate), facial (e.g. range and speed of movement
of the lips), and finger tapping metrics in near real-time from the recorded audio
and video, and store them together with information about the interaction, like in-
terview duration or completion status, in a database. After the interactive part of the
assessment, participants are asked to complete one or more surveys about the inter-
action or a specific condition. All obtained information can be accessed by clinicians
or researchers during and after the interaction through an easy-to-use web-based
dashboard for further review and analysis.

1 https://www.prolific.co/
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3 Balance Assessment

The multimodal dialog system described in the previous section has been extended
to be able to guide participants through a set of exercises inspired by the BBS. The
BBS was chosen because, in contrast to assessments like the MDS-UPDRS2 for
Parkinson’s Disease, it is disease agnostic. Further, it is less time consuming than
other disease-agnostic tests like the BESTest or the Fullerton Advanced Balance
Scale (Krzysztoń et al, 2018). Overall, six of the items in the BBS have been imple-
mented with appropriate modifications to adapt them for a remote assessment. The
items were selected based on their interpretability and ease of performance in a re-
mote non-clinical setting. All items, except the standing on one leg task, are included
twice to allow recording from both a frontal and side view, while the standing on
one leg item was split into two separate tasks to ensure that participants are recorded
standing both on their dominant and non-dominant legs. The following section pro-
vides an overview of the structure of the balance assessment and a description of the
employed tasks.

1. Part 1: Demographics Survey
Before the interactive assessment, participants are asked to complete a demo-
graphics survey and indicate whether they are able to stand up on their own and
have a solid chair without wheels and armrests.3 If they indicate that they cannot
fulfil one of the requirements, they will not continue with the interactive balance
assessment.

2. Part 2: Interactive Assessment - Frontal View
Participants are shown a demonstration of the required seating setup, which
ensures that their whole body (from head to toe) is visible both when sitting and
standing4, and a demonstration and explanation of the required tasks. Afterwards,
they can either re-watch the demonstrations or change their seating setup as
instructed. Finally, once they are ready, Tina will guide them through the following
seven tasks.

a. Sit-to-Stand: Participants are told to sit upright with their arms crossed across
their shoulders and then asked to stand up.

b. Standing Unsupported: Participants are told that they can put their hands
down and then asked to stand upright for 10 seconds5

2 https://www.movementdisorders.org/MDS/MDS-Rating-Scales/MDS-Unified-Parkinsons-
Disease-Rating-Scale-MDS-UPDRS.htm
3 Participants with known balance problems or neurological conditions will also be asked to confirm
that a caregiver is present to assist them with the seating setup and for safety reasons, in case a
participant loses their balance.
4 To achieve this, participants need to place their recording device at a distance of approximately
two meters from their seat.
5 The duration of 10 seconds was chosen to ensure that the complete assessment does not take
longer than 10 minutes to allow its integration into existing assessments of speech, facial, and limb
motor behaviors. Whether 10 seconds are sufficient to extract clinically meaningful metrics will be
investigated in future work.
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c. Standing Unsupported With Eyes Closed: Participants are asked to close
their eyes and keep standing until they hear further instructions. After 10
seconds they are told that they can open their eyes.

d. Standing On One Leg Right: Participants are asked to lift up their left leg
(for 10 seconds) until they hear further instructions.

e. Standing On One Leg Left: Participants are asked to lift up their right leg
until they hear further instructions. After 10 seconds they are told that they
can put their foot down.

f. Stand-to-Sit: Participants are asked to cross their arms and sit down.
g. Sitting Unsupported: Participants are asked to sit upright, with their arms

crossed, and without taking support of the backrest for 10 seconds.

3. Part 3: Interactive Assessment - Side View
Similar to the frontal view, participants are first shown demonstrations of the
required seating setup and tasks. Afterwards, they can either re-watch the demon-
strations or change their seating setup as instructed. Finally, once they are ready,
Tina will guide them through the following five tasks, which use the same in-
structions as for the frontal view.

a. Sit-to-Stand
b. Standing Unsupported
c. Standing Unsupported With Eyes Closed
d. Stand-to-Sit
e. Sitting Unsupported

4. Part 4: UX Survey
After the interactive assessment, participants are asked to complete a user expe-
rience (UX) survey to obtain information about the usability of the system, e.g.
the perceived performance of the system or the clarity of instructions. For partic-
ipants with neurological conditions a disease-specific questionnaire will usually
be shown, e.g. the MDS-UPDRS for PD patients.

The whole balance assessment takes about 10 minutes and can therefore be combined
with other tasks designed to assess participants’ speech or facial movements to
provide a holistic assessment. The video captured during the assessment – recorded
with a resolution of 320x240 pixels and 15fps to ensure that the system also works
seamlessly for people with bandwidth-limited internet connections – is used to
compute a variety of balance related metrics in two steps. First, MediaPipe Pose,
which is based on BlazePose (Bazarevsky et al, 2020), is used to extract 33 3D body
landmarks, and (2) a variety of metrics, like the time it takes participants to stand up
or how long they were able to stand on one leg, are computed. Figure 1 illustrates
the setup for the frontal tasks as well as the extracted body landmarks.
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Fig. 1 Participant performing the Sit-to-Stand task. The right panel illustrates the extracted body
landmarks.

4 Feasibility Analysis

To evaluate the feasibility of conducting a remote balance assessment via a multi-
modal dialog system, the 51 assessment sessions from 49 healthy participants (24
females, 25 males; mean age 41 years, range 18 - 68 years) recruited via Prolific6

were used, while the 11 assessments belonging to internal testers were discarded be-
cause they had a much higher compliance rate than the crowd-sourced participants.
7 assessments ended after the initial survey because the participants indicated that
they did not have an appropriate chair and 3 assessments were terminated by the
participants during the setup phase for the second part of the assessment because
they did not have enough space. 2 of the remaining 41 sessions that started the in-
teractive part of the assessment were terminated early. One of them was terminated
during the third task without any obvious reason, while the other was terminated
after the second part was completed and the participant was not able to adjust their
seat for the third part, i.e. the side view. However, the latter participant did another
successful assessment a few minutes later after changing their setup.

The overall task compliance, i.e. whether participants did the individual balance
tasks as instructed, was very good at 86.8%. The main non-compliant behavior in-
volved movements away from the camera after standing up or movements towards the
recording device to adjust position so that the whole body is visible. Figure 2 shows
that most non-compliant behavior occurred during the Sit-to-Stand and Stand-to-Sit
tasks, while complete compliance was observed for the Standing Unsupported task.
Furthermore, 77.8% of all non-compliant behavior was observed during the frontal
view tasks as compared to the side view tasks. The reason might be that participants

6 https://www.prolific.co/
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Fig. 2 Proportion of non-compliant behavior broken down by task. Overall, non-compliant behavior
occurred for 63 (13.2%) of the 477 tasks recorded from all participants.

knew already what to expect when setting up their recording device and seat for the
side view tasks. In contrast to the task-specific compliance, the compliance with the
instructions regarding the camera setup, i.e. whether participants moved their seat
so that their whole body was visible both when sitting and standing, was low. There
was only one session where the participant was fully visible from head to toe for
both parts of the interactive session. Interestingly, for the side view, seven partici-
pants were completely visible, which seems to confirm the learning/practice effect
observed with task compliance. Furthermore, for seven assessments the participants
were visible for both views from their heads to (at least) their knees, which can still
allow clinicians to assess the performance. Note that while we consider data from
paid crowdsourced participants here, participants in real-world deployment scenar-
ios such as clinical trials are often more highly motivated (Sacristán et al, 2016),
which would likely result in a higher compliance rate.

In general, our results show that it is feasible to conduct remote balance assess-
ments via a multimodal dialog system because the majority of participants were able
to properly perform the tasks as instructed. However, even properly performed tasks
are difficult to evaluate if only a small part of the body is visible. Therefore, one must
ensure adequate camera setup compliance before assessments can be conducted with
patients. One option to ensure compliance might be to provide interactive feedback
during the camera setup, which we will investigate in future work.
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5 Analytical Validation

While the previous section has shown that utilizing a multimodal dialog system to
conduct remote balance assessments is feasible, the question remains whether the
obtained recordings can be used to extract meaningful automated metrics (over and
above those that can be either hand annotated or assessed subjectively by a clinician).
To this end, this section will analyze the analytical validity of an automatically
computed time-taken-from-Sit-to-Stand (TSS) metric. The TSS metric is computed
from shoulder landmarks extracted by MediaPipe Pose as follows:

1. The path of the center of the shoulders in 2D space (𝑆𝐶𝑝𝑎𝑡ℎ) was computed
by taking the mean of the x- and y-coordinates of the left and right shoulder
landmarks.

2. Min-max normalization was applied to reduce the effect of varying camera dis-
tances. Afterwards, the signal was passed through a Savitzky-Golay filter (Morgan
et al, 2023) with a window length of five and a polynomial order of three to remove
noise.

3. The velocity of the Sit-to-Stand movement was calculated by taking the first
derivative of 𝑆𝐶𝑝𝑎𝑡ℎ.

4. The start and end of the Sit-to-Stand activity was identified by determining the
intervals during which the velocity changes for the first and last time more than
a predefined threshold, respectively. More specifically, to determine the start of
the Sit-to-Stand activity a sliding window with size 𝐿 is used and moved to
forward from the beginning of the video until the difference between the first and
last frame of the sliding window is greater than threshold 𝜏, in which case the
first frame of the sliding window is considered the beginning of the Sit-to-Stand
activity. To determine the end of the Sit-to-Stand activity, the window is moved
backward starting from the end of the video.

5. Finally, the duration of the Sit-to-Stand activity is calculated as the number of
frames in the interval determined during the previous step divided by the frame
rate (in number of frames per second), i.e. 𝑇𝑆𝑆 =

# 𝑓 𝑟𝑎𝑚𝑒𝑠

𝑓 𝑝𝑠
.

To determine the optimal values for the two parameters used by the TSS algorithm,
i.e. 𝐿 and 𝜏, only 22 of the 62 assessments were used because they were the only
ones for which participants were both visible from their heads to (at least) their knees
and compliant with the instructions of the Sit-to-Stand task. Leave-one-out cross-
validation was performed, to determine the parameters leading to the lowest mean
absolute error (MAE) and root mean square error (RMSE) between the TSS metric
value predicted by the algorithm and the ground truth obtained through manual
annotations of the start and end frames of the Sit-to-Stand activity. For 𝐿, values
between 2 and 15 frames were evaluated and for 𝜏, values between 0.02 and 0.08
with a step size of 0.001. The lowest MAE of 224ms (standard deviation: 7ms) on
the training data was achieved with 𝐿 = 10 and 𝜏 = 0.044 or 𝜏 = 0.045, which
in turn resulted in a MAE of 224ms (standard deviation: 156ms) on the test data,
while the lowest RMSE of 224ms (standard deviation: 7ms) was obtained for 𝐿 = 10
and 𝜏 = 0.049 resulting in a RMSE of 267ms (standard deviation: 145ms) on the
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Fig. 3 Illustration of the absolute errors for all sessions and optimal parameter combinations.

test data. Figure 3 shows the absolute errors for all sessions and all three optimal
parameter combinations. Since the obtained MAE and RMSE are close to the human
inter-annotator MAE and RMSE (based on two annotators) of 202ms and 285ms,
respectively, and less than 16% of the mean TSS of 1.73s, an argument can be
made that the metric can be considered analytically valid for healthy controls. This
illustrates that the recorded data can be used to extract analytically valid balance
metrics if both the camera setup and task are performed correctly.

6 Conclusion

We have shown that it is in general feasible to conduct remote assessments of balance
through a multimodal dialog system and that the collected data can be used to extract
analytically valid balance metrics. However, the obtained results have also shown
that the utility of the collected data depends strongly on participants’ compliance
to the instructions for the camera setup and tasks, and that especially the former is
currently low. In future work, we will investigate whether interactive feedback to
guide participants during the camera setup can increase compliance. Additionally,
we will analytically validate further balance related metrics. Finally, we are planning
to repeat both the feasibility assessment and analytical validation along with clinical
validation for people with neurological conditions.



10 Sukhdev et al.

References

Abujrida H, Agu E, Pahlavan K (2017) Smartphone-based gait assessment to infer parkinson’s
disease severity using crowdsourced data. In: 2017 IEEE Healthcare Innovations and Point of
Care Technologies (HI-POCT), IEEE, pp 208–211

Allen NE, Canning CG, Almeida LRS, Bloem BR, Keus SH, Löfgren N, Nieuwboer A, Verheyden
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