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Purpose: We investigate the extent to which automated audiovisual metrics 
extracted during an affect production task show statistically significant differ-
ences between a cohort of children diagnosed with autism spectrum disorder 
(ASD) and typically developing controls. 
Method: Forty children with ASD and 21 neurotypical controls interacted with a 
multimodal conversational platform with a virtual agent, Tina, who guided them 
through tasks prompting facial and vocal communication of four emotions— 
happy, angry, sad, and afraid—under conditions of high and low verbal and 
social cognitive task demands. 
Results: Individuals with ASD exhibited greater standard deviation of the funda-
mental frequency of the voice with the minima and maxima of the pitch contour 
occurring at an earlier time point as compared to controls. The intensity and 
voice quality of emotional speech were also different between the two cohorts 
in certain conditions. Additionally, facial metrics capturing the acceleration of 
the lower lip, lip width, eye opening, and vertical displacement of the eyebrows 
were also important markers to distinguish between children with ASD and neu-
rotypical controls. Both facial and speech metrics performed well above chance 
in group classification accuracy. 
Conclusion: Speech acoustic and facial metrics associated with affect produc-
tion were effective in distinguishing between children with ASD and neurotypical 
controls. 
Supplemental Material: https://doi.org/10.23641/asha.28027796 
Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder (American Psychiatric Association, 2013) 
with an estimated overall prevalence of one in 36 children 
aged 8 years in the United States (Maenner, 2023). A 
defining feature of ASD, according to the Diagnostic and 
Statistical Manual of Mental Disorders, Fifth Edition 
(DSM-5) criteria, is impairment in nonverbal communi-
cative behaviors used for social interaction (American Psy-
chiatric Association, 2013) such as facial expression, which 
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can manifest as absent/minimal, more intense/exaggerated, 
poorly integrated, or inappropriate to context. Vocal fea-
tures such as fundamental frequency (F0) and prosody, 
which carry emotion-specific information (Nussbaum et al., 
2022), have been described as atypical when produced by 
children with ASD (Nadig & Shaw, 2012). Facial expres-
sions of emotion have also been characterized as less natural 
and more intense in individuals with ASD (Faso et al., 
2015). Prior studies have reported atypical production of 
vocal and facial affect during emotional speech (Hubbard 
et al., 2017; Loveland et al., 1994) and poor cross-modal 
coordination between facial expression and emotional speech 
production in ASD (Sorensen et al., 2019). 

The feasibility and potential clinical utility of speech 
biomarkers for automated assessment of atypical vocal 
and facial expression in ASD and other neurodevelopmen-
tal disorders have been established by prior work
h • 1–16 • Copyright © 2024 The Authors
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(Ramanarayanan et al., 2022). Acoustic–phonetic and lex-
ical features extracted from short, unstructured conversa-
tions accurately identified the diagnostic status of children 
with ASD 66% of the time and that of typically develop-
ing children 86% of the time (Cho et al., 2019). Auto-
mated assessment of prelinguistic vocalizations has also 
been shown to be helpful in predicting future diagnosis of 
ASD (Pokorny et al., 2017). Atypical facial expressions, 
defined by facial action unit (FAU) intensities, in ASD 
can be automatically quantified through the use of com-
puter vision and FAU intensities (Leo et al., 2018). FAUs 
are the components of facial expressions defined by 
the movement of a muscle or set of muscles (Ekman & 
Friesen, 1978). FAU intensities are a way to quantify 
emotional expressions through temporal and geometric 
analysis of FAUs. When individuals with ASD were cued 
to mimic facial expressions that carried either positive or 
negative valence (expressions that were inferred to carry 
positive or negative values), the degree of facial move-
ments did not depend on the emotional valence and the 
movements were fleeting, exaggerated, and jerky (Zane 
et al., 2019) as compared to a control group. Prior work 
has demonstrated the feasibility and utility of computer 
vision in a standalone or multimodal framework in ASD 
research (Bangerter et al., 2020; Samad et al., 2017; Sorensen 
et al., 2019). Given that there are no standardized measures 
of facial or vocal affect production ability currently avail-
able, these automated, objective measurements have poten-
tial clinical utility in quantifying domain-specific nonverbal 
communicative behavior. 

Our prior work has demonstrated the utility of 
a cloud-based multimodal conversational platform 
(Ramanarayanan et al., 2023, 2024; Suendermann-Oeft 
et al., 2019) that uses a virtual human guide, Tina, to con-
duct self-driven assessments that elicit speech and facial 
expressions through a variety of tasks for detection and 
progress monitoring of various neurological and mental 
health disorders like amyotrophic lateral sclerosis (Neumann 
et al., 2021, 2024), depression (Neumann et al., 2020), 
Parkinson’s disease (Kothare et al., 2022), and schizophre-
nia (Richter et al., 2022). During an interactive session 
with Tina, analytic modules extract objective metrics in 
real time that can be accessed by researchers or clinicians 
through a user-friendly dashboard. In prior work in ASD 
(Kothare et al., 2021), we showed that atypical affect pro-
duction, measured using a novel affect production task 
(APT), correlates with accuracy in recognition of vocal 
and facial affect in children with ASD. Furthermore, we 
identified a positive correlation between jaw kinematic 
measures and the motor speed of the dominant hand, 
which supports the hypothesis that there is a coupling 
between speech motor coordination and fine motor skills 
in ASD (Talkar et al., 2020). 
•2 Journal of Speech, Language, and Hearing Research 1–16
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Building on this foundation, the current work aims 
to identify facial and vocal markers that show significant 
differences between children with ASD and neurotypical 
controls (NTCs). Objective audiovisual metrics of affect 
production in ASD may be used to quantify expressive 
aspects of nonverbal communication. Impairment in non-
verbal communication is one of the diagnostic criteria for 
ASD (American Psychiatric Association, 2013). As such, 
quantification of this symptom domain also has potential 
clinical utility in tracking clinical presentation over time 
or in response to interventions. This is particularly salient, 
as objective measures of symptom presentation in ASD 
are lacking. As such, clinical trials currently must rely on 
subjective observation and informant report measures. 

We leverage the aforementioned objective multi-
modal metrics to answer the following research questions 
in this work: 

1. Effect of cohort: Which vocal and facial metrics 
associated with affect production show significant dif-
ferences between children with ASD and NTCs? Are 
cohort differences due to actual affective communica-
tion differences rather than due to general nonaffec-
tive differences in facial and vocal expression? 

2. Effect of production task demands: Can these differ-
ences be captured in shorter utterances to make the 
task more accessible to individuals with lower verbal 
ability? Can these differences be captured without 
provision of additional emotional context (i.e., illus-
trated narrative describing an emotional situation)? 

3. Effect of produced emotion: How do these objective 
metrics vary across emotions produced (happy, sad, 
angry, afraid)? 

4. Group differences in vocal imitation: Are children 
with ASD as sensorimotorically capable of accu-
rately repeating monosyllabic productions to convey 
emotions as their NTC peers? 

5. Objective classification accuracy: How effective are 
the metrics in classifying the two groups—ASD 
and NTC? 
Method 

Participants 

The study was approved by the institutional review 
board of the University of California, San Francisco 
(UCSF IRB Approval 11-05249 and 21-33613). Informed 
consent from the participants’ guardians and written 
assent from the participants were obtained prior to enroll-
ment. The study was conducted onsite at the University of
Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



California, San Francisco. Data from 40 participants with 
ASD (14 female, mean age ± standard deviation = 12.50 ± 
2.68 years) and 21 NTC participants (11 female, mean 
age ± standard deviation = 12.52 ± 2.88 years) who com-
pleted an interactive session on the cloud-based multi-
modal dialogue platform (see Table 1) between December 
2019 and December 2022 were included in the analysis. 
Inclusion criteria for the NTC group were: no neurologi-
cal or psychiatric diagnosis and a Social Communication 
Questionnaire score in the nonclinical range (Rutter et al., 
2003). To minimize differences across participants and 
cohorts, these sessions were conducted in the same con-
trolled environment on the same device (a MacBook Pro 
with an Intel Core i7 processor) in the presence of a clini-
cal psychology doctoral student who accompanied the 
participant in the testing room to help with any technical 
difficulties and provide behavioral support during data 
collection (e.g., redirecting attention during breaks). Diag-
noses in the ASD cohort were confirmed according to 
DSM-5 criteria by a licensed clinical psychologist (author 
C.D.) who established research reliability on the Autism 
Diagnostic Observation Schedule–Second Edition (ADOS-
2; Lord et al., 2000) and the Autism Diagnostic 
Interview–Revised (ADI-R; Lord et al., 1994). Informa-
tion obtained from the ADI-R and the ADOS-2 (used as 
an observational tool only, as scoring was not possible 
due to deviation from standard administration because of 
COVID-19 masking mandates) was used to inform diag-
nostic determinations along with parent report measures 
of social, emotional, behavioral, and adaptive functioning 
via the Behavior Assessment System for Children–Third 
Edition (Reynolds & Kamphaus, 2015), performance-
based measures of language skills via the Clinical Evalua-
tion of Language Fundamentals–Fifth Edition (CELF-5; 
Table 1. Participant demographics. 

Variable

Sample size

Sex at birth, female (%)

Nonbinary/trans (%)

Mean age (SD) in years

African American (%)

Asian (%)

Caucasian (%)

Hispanic (%)

Multiracial (%)

Wechsler Intelligence Scale for Children Full-Scale IQ 
(M ± SD; range) 

99

CELF-5 Expressive Language Index (M ± SD; range) 98

CELF-5 Receptive Language Index (M ± SD; range) 96

TONI-4 Nonverbal IQ (M ± SD; range) 102

Note. ASD = autism spectrum disorder group; CELF-5 = Clinical Eval
Nonverbal Intelligence–Fourth Edition. 

K

Downloaded from: https://pubs.asha.org 73.223.180.188 on 01/04/2025, 
Wiig et al., 2013), and general intellectual abilities on the 
Wechsler Intelligence Scale for Children (WISC; Wechsler, 
2014) and the Test of Nonverbal Intelligence–Fourth Edi-
tion (TONI-4; Brown et al., 2010). Standardized test scores 
are included in Table 1 and Figure 1. 

The ASD cohort had a lower average score (see 
Table 1 and Figure 1) on the WISC Full-Scale IQ (t test; 
t = −3.25, p = .0019), the CELF-5 Expressive Language 
Index (t test; t = −2.30, p = .0249), and the CELF-5 Recep-
tive Language Index (t test; t = −2.83, p = .0064) but not 
on the TONI-4 Nonverbal IQ (t test; t = −1.78, p =  .0805). 
Task 

The APTs presented in the interactive session asked 
the participants to produce one of four emotions—happy, 
sad, angry, and afraid—through the subtasks listed below. 
All tasks are performed under directed conditions in 
which the emotion the participant is expected to commu-
nicate is explicitly stated, with the exception of the imita-
tion task in which the emotion is not specified and the 
participant is simply asked to mimic each stimulus. The 
session begins with a speaker test, background noise 
check, and a microphone test. The speaker test determines 
if the participant is able to hear sounds. The virtual guide, 
Tina, says a number from zero to nine, and the partici-
pant is asked to enter the number in a text field. The 
background noise measures ambient background noise in 
decibels while the participant remains silent. During the 
microphone test, the participant is asked to speak, and it 
is determined whether the intensity of the participant’s 
speech is at least 40 dB. The participant is asked to ensure 
that their face is fully visible with no face coverings or
ASD Controls 

40 21 

14 (35) 11 (52%) 

4 (10%) 1 (4.76%) 

12.5 (2.68) 12.52 (2.88) 

1 (2.5%) 0 (0%) 

5 (12.5%) 3 (14%) 

20 (50%) 11 (52%) 

3 (7.5%) 1 (5%) 

11 (27.5%) 6 (29%) 

.25 ± 21.93; 43–131 116.19 ± 13.00; 85–142 

.98 ± 22.75; 45–131 111.24 ± 12.01; 93–135 

.75 ± 24.23; 45–135 112.57 ± 11.27; 92–133 

.68 ± 14.36; 63–126 109.10 ± 11.29; 88–133 

uation of Language Fundamentals–Fifth Edition; TONI-4 = Test of 
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Figure 1. Histograms of scores: (a) WISC Full-Scale IQ, (b) CELF-5 Expressive Language Index, (c) CELF-5 Receptive Language Index, and 
(d) TONI-4 Nonverbal IQ. WISC = Wechsler Intelligence Scale for Children; CELF-5 = Clinical Evaluation of Language Fundamentals–Fifth 
Edition; TONI-4 = Test of Nonverbal Intelligence–Fourth Edition; ASD = autism spectrum disorder group.
shadows obscuring their face. Participants are also asked, 
“How do you identify?” with four options to choose from: 
a boy, a girl, nonbinary, or other than a boy or a girl. 
Tina then welcomes the participant to the session.

• Task 1. Noncontextual monosyllabic emotion pro-
duction (eight prompts, two prompts per emotion): 
An instruction video recorded by an actor in a neu-
tral voice and facial expression is played for the child. 
It begins with the actor saying, “This activity mea-
sures how you can communicate the way you are feel-
ing by the way your face looks and your voice 
sounds.” The actor then lists the four emotions they 
will be asked to communicate. The video continues 
by explaining that the word they will be asked to say 
is “oh” (/oʊ/): “The way you say it, and the way your 
face looks has to make me understand what feeling 
you are trying to communicate.” The actor gives an 
example with the emotion “disgusted,” an affective 
•4 Journal of Speech, Language, and Hearing Research 1–16
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expression the participant will not be asked to pro-
duce for any of the tested turns. The video ends with 
the actor reminding the child to use their face and 
voice to communicate the prompted affect. After 
each video prompt (e.g., “Use your face and voice to 
say ‘oh’ in a way that seems happy”), the participant 
produces the word “oh” in a manner that, to the best 
of their ability, conveys the emotion specified in the 
prompt (i.e., happy, sad, angry, afraid). The purpose 
of this task is to assess the ability of the participant to 
produce a monosyllabic utterance that conveys a 
specified affective meaning.

• Task 2. Noncontextual monosyllabic vocal imitation 
(16 prompts, four prompts per emotion): The virtual 
agent instructs the participant: “Now I want you to 
listen to the way the person says ‘oh’ on this record-
ing and try to repeat it in the same way. Try to 
sound exactly the way it sounds on the recording.” 
There is no visual stimulus or emotion label
Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



 

presented in this condition. After each audio record-
ing is played, the participant imitates the recording 
to the best of their ability. Through this imitation, 
we can assess whether the participant is sensorimo-
torically capable of producing exemplary emotional 
vocal expression, independent of social-cognitive 
processes needed for emotional communication (e.g., 
the basic ability to produce specific sounds that con-
vey an emotion).

• Task 3. Contextualized monosyllabic emotion pro-
duction (16 prompts, four prompts per emotion): The 
virtual agent introduces the next task by saying, 
“This next activity is all about Jessie. Jessie identifies 
as a [child’s identified gender] just like you.” Jessie is 
gender-matched to the participant’s selection in the 
beginning of the session (boy, girl, neither boy nor 
girl, both boy and girl). This is in an effort to make 
the child see Jessie as relatable and as someone who 
would have similar emotional reactions as well as to 
prevent the child from attempting to “impersonate” a 
child of a different gender. The agent continues, “This 
activity measures how you can communicate the way 
you are feeling by the way your face looks and the 
way you say your words.” The virtual agent then 
explains that she will be telling stories about Jessie, 
and  in response  to each  story,  the  child must  say  the
same word “oh” in a way that conveys the emotion 
that Jessie is feeling. The agent gives the following 
example with the emotion “disgusted,” which the child 
will not be asked to produce: A picture illustrating the 
narrative is shown on the screen, and the virtual agent 
says, “Suppose Jessie poured some milk in the cereal 
bowl but didn’t realize it was old. It smelled awful. 
Jessie felt disgusted and said ‘oh.’” The word “oh” is 
Figure 2. Example picture stimulus for Task 3 to evoke an emotional prod
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produced to sound as though the agent is disgusted. 
The agent then prompts the child with a new situation 
and tells them Jessie is surprised, another emotion the 
child will not have to produce for tested turns. The agent 
then prompts the child by saying, “Jessie says . . .  ,” and 
the child responds by saying “oh” in a surprised way. 
The human examiner administering the task may 
have the child repeat the condition if more practice is 
required to understand the task before continuing. 
The child is then presented with single pictured illus-
trated narratives for each turn. When Tina prompts 
the child with, “Jessie says . . .  ,” the child produces 
the monosyllable “oh” to convey the specified, situa-
tionally appropriate emotion through facial and vocal 
expression. See Figure 2 for an example illustration. 
The purpose of this task condition is to assess the 
ability to produce specified emotions under a given 
emotional context to help those who may not under-
stand the concept of named emotions out of context.

• Task 4. Noncontextual sentence-length emotion pro-
duction (eight prompts, two prompts per emotion): 
An instruction video-recorded by an actor in a neu-
tral voice and facial expression is played for the child. 
It begins by saying, “This activity measures how you 
can communicate the way you are feeling by the way 
your face looks and the way you say sentences,” and 
lists the four emotions they will be asked to commu-
nicate. The video continues by explaining that the 
sentence they will be asked to say is, “I’ll be right 
back. The way you say it, and the way your face 
looks has to make me understand what feeling you 
are trying to communicate.” The actor gives an 
example with the emotion “disgusted,” an emotion 
the participant will not be asked to produce. The
uction of the monosyllable “oh.”

othare et al.: Audiovisual Metrics of Affect Production in Autism 5

Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



video ends with the actor reminding the child to use 
their face and voice to communicate the prompted 
emotion. After each video prompt (e.g., “Use your 
face and voice to say ‘I’ll be right back’ in a way that 
seems happy”), the participant produces the sentence 
“I’ll be right back” in a manner that, to the best of 
their ability, conveys the emotion specified in the 
prompt. The sentence “I’ll be right back” was selected 
for its emotionally neutral semantic context in an 
effort to parallel the stimulus used in an analogous 
affect recognition task, the Diagnostic Analysis of 
Nonverbal Accuracy–Second Edition (DANVA-2; 
Nowicki & Duke, 1994). The DANVA-2 vocal affect 
stimuli use the phrase, “I’m going out of the room right 
now, but I’ll be back later,” conveying happy, sad, 
angry, and fearful vocal affect. We chose a shortened, 
simpler sentence for this task in order to make the test 
more accessible to individuals who may have lower 
language levels and speak in less complex sentences.

For all the tasks described above, there is an option 
to repeat each turn, which the examiner would select if 
the child was not responding to the prompt, not attending 
to the task, or otherwise had an unusable turn. See Figure 3 
for a schematic of the interactive session. 

Data Analysis 

Extraction of Metrics 
Speech audio data were collected by the platform at 

a sampling rate of 48 kHz. All speech acoustic metrics 
were extracted using Praat (Boersma & van Heuven, 
2001). These metrics were spectral domain metrics (F0 
[Hz]; jitter [difference of difference of periods, %]; F1, F2, 
and F3 formant frequencies [Hz]; F2 slope [Hz/s]; cepstral 
peak prominence [CPP; dB]; harmonics-to-noise ratio 
•

Figure 3. Schematic of the virtual agent-based multimodal dialogue platfo
an exemplar set. See Table 2 for a comprehensive list. 
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[dB]), signal energy metrics (shimmer [%], signal-to-noise 
ratio [SNR; dB], intensity [dB]), and duration metrics 
(speaking duration [s], articulation duration [s], time point 
of maximum and minimum F0). 

To extract facial metrics, MediaPipe face detection 
based on BlazeFace (Bazarevsky et al., 2019) was used to 
determine framewise x and y coordinates of the face. 
Facial landmarks were then generated by the MediaPipe 
face mesh algorithm (Kartynnik et al., 2019), 14 of which 
are key landmarks in the computation of jaw kinematics, 
lip aperture, mouth surface area, eyebrow height, and so 
forth. All facial metrics were normalized by dividing them 
by the intercaruncular distance (see Figure 4) to account 
for cross-participant positional variability relative to the 
camera (Roesler et al., 2022). 

See Table 2 for an overview of the metrics and Sup-
plemental Material S1 for a glossary. All metrics went 
through a two-step automatic outlier detection. Metrics 
are not excluded on a participant level but on a turn level 
in this method. First, all metric values beyond 5 SDs, that 
is, extreme outliers, from the mean metric value were 
removed. These extreme outliers likely arise from incorrect 
task performance or noncompliance. Second, the mean of 
the distribution was recomputed, and any values beyond 3 
SDs were flagged as outliers and removed from the analy-
sis in accordance with the three sigma rule (Upton & 
Cook, 2008). 
Research Question 1: Effect of Cohort 

Metrics Showing Statistically Significant 
Differences Between Cohorts 

Since each subtask had multiple turns per emotion, 
metrics were averaged across turns within every emotion.
rm used in the study. Note that the metrics shown on the right are 
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Figure 4. The 14 facial landmarks used to compute facial metrics. 
The intercaruncular distance is shown in red, the distance between 
the right eye left corner (RELC) and the left eye right corner 
(LERC). The other landmarks are as follows: RB/LB = right and left 
brow; UREC/ULEC/LREC/LLEC = upper/lower right and left eye 
center; NT = nose tip; UL/LL = upper/lower lip; RMC/LMC = right 
and left mouth corner; JC = jaw center. 
All metrics were z-scored by sex at birth across the entire 
sample to account for sex-specific differences. To identify 
which metrics showed statistically significant differences, 
nonparametric Kruskal–Wallis tests (Kruskal & Wallis, 
1952) were run for all metrics. Effect sizes, as measured 
by Glass’s Δ (Glass et al., 1981), were calculated for all 
metrics, and only those metrics with an absolute Glass’s Δ 
of greater than 0.6 or large effect sizes (Panzarella et al., 
2021) are reported in this article. 
Table 2. An overview of the automatically extracted metrics, 472 in total (

Modality Domain

Speech Energy Shimmer (%), si

Spectral Mean; standard 
formant frequ

Timing Speaking duratio
point of maxi

Voice quality Cepstral peak p

Facial Oral/labial Lip aperture, lip 
surface area 

Articulatory movement Velocity, acceler

Ocular and circumocular Eye opening, ve

a Not calculated for Task 4. b Calculated only for Task 4. 

K

Downloaded from: https://pubs.asha.org 73.223.180.188 on 01/04/2025, 
Human Rater Classification Accuracy 
To assess if group differences in facial and vocal 

metrics were associated with differences in affective com-
munication as opposed to general differences in facial and 
vocal expression, two human raters (with at least average 
scores on the DANVA-2 Facial and Vocal Affect Recog-
nition subtests; Nowicki & Duke, 1994) classified the emo-
tion (happy, sad, angry, afraid, or neutral) produced by 
participants in response to each prompt. Raters were 
blinded to the prompted emotion and group. Facial affect 
was classified from video responses of each participant in 
the absence of vocal audio. Likewise, vocal affect was clas-
sified in the absence of video. Thus, raters made affective 
judgments based solely on the facial and speech behavior 
of the participant, respectively. Percent accuracy values of 
emotion judgment using video and audio were calculated 
for each rater and were then averaged across raters. Non-
parametric independent-samples Mann–Whitney U tests 
were then run to identify differences between the two 
cohorts in percent accuracy of the rater’s perception of 
facial and vocal affective expression. 

Research Question 2: Effect of Production 
Task Demands 

To evaluate whether group differences varied accord-
ing to task demands (i.e., production length, comprehension 
of contextual narrative), the above-mentioned Kruskal– 
Wallis tests were performed on task–metric combinations. 

Research Question 3: Effect of 
Produced Emotion 

Testing for an Interaction Effect Between Emotion 
and Cohort 

To test whether an interaction effect between emo-
tion and cohort was present when it came to differences in 
metric values, we ran a two-step analysis. For this analy-
sis, we aggregated all 30 metrics across the two
Tasks 1–3 = 360 and Task 4 = 112). 

Metrics 

gnal-to-noise ratio (dB), intensity (dB), articulation intensity (dB) 

deviation; max and min fundamental frequency (F0, Hz); jitter (%); 
encies F1, F2, and F3 (Hz)a ; F2 slope (Hz/s)a 

n (s),b percentage pause time (%),b articulation duration (s), time 
mum and minimum F0 

rominence (dB), harmonics-to-noise ratio (dB) 

width, mouth surface area, mean symmetry ratio of the mouth 
of the left half to the right half 

ation, and jerk of the lower lip and jaw center 

rtical displacement of the eyebrows 

othare et al.: Audiovisual Metrics of Affect Production in Autism 7
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Figure 5. Effect sizes of speech and facial metrics that show statis-
tically significant differences between ASD and controls at an alpha 
threshold of .05. Positive effect sizes (dark blue boxes) indicate 
larger values in the ASD cohort. Negative effect sizes (red boxes) 
indicate smaller values in the ASD cohort. Task 1: noncontextual 
monosyllabic emotion production, Task 2: noncontextual monosyl-
labic vocal imitation, Task 3: contextualized monosyllabic emotion 
production, and Task 4: noncontextual sentence-length emotion 
production. ASD = autism spectrum disorder group; F0 = funda-
mental frequency; SNR = signal-to-noise ratio; CPP = cepstral peak 
prominence; Avg = average; Accel = acceleration; Vert = vertical. 
comparable tasks that involved noncontextual and contex-
tual monosyllabic production (Tasks 1 and 3) by averag-
ing them. In Step 1, we ran a one-way repeated-measures 
analysis of variance (ANOVA; Vallat, 2018) to test for an 
effect of emotion without controlling for cohort. In Step 
2, to test for an interaction effect between cohort and 
emotion, we ran a mixed-design ANOVA (Murrar & 
Brauer, 2018) for the metrics that showed a significant 
effect of emotion in Step 1. The between-subjects factor 
was cohort and the within-subject factor was emotion to 
account for repeated measurements. For metrics that 
showed a significant interaction effect between emotion 
and cohort, post hoc Wilcoxon signed-rank tests were run 
for pairwise comparison. 

Research Question 4: Group Differences in 
Vocal Imitations 

To evaluate whether the cohorts differed in vocal 
affect imitation, which assesses the ability to produce 
vocal sounds that convey emotion without requiring 
knowledge of how to use vocalization for the purpose of 
communication emotion, we looked at metrics showing 
differences in Task 2 (vocal imitation of a noncontextual 
monosyllable). 

Research Question 5: Objective 
Classification Accuracy 

Classification Experiment 
For all metrics with Glass’s Δ greater than 0.6, a 

leave-one-out logistic regression classifier model using the 
Scikit-learn Python module (Pedregosa et al., 2011) was 
run using speech acoustic metrics alone, facial metrics 
alone, and the combination of both modalities. Receiver 
operating characteristic (ROC) curves were plotted for 
these three models. Area under the curve (AUC; the 
higher the better) and the Brier score (Brier, 1950) mea-
suring the accuracy of probabilistic predictions (the lower 
the better) were generated for these models. This process 
was repeated for each individual emotion to test classifica-
tion of groups while controlling for emotion. 
Results 

Research Question 1: Effect of Cohort 

The effect sizes of metrics, as measured by Glass’s Δ, 
that showed a statistically significant difference between the 
ASD cohort and controls and had an absolute value 
greater than 0.6 are shown in Figure 5. A positive effect 
size denotes a greater median value for the ASD cohort, 
and a negative effect denotes a smaller median value for 
•8 Journal of Speech, Language, and Hearing Research 1–16
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the ASD cohort. Note that nonsignificant effects are repre-
sented by blank spaces, irrespective of the size or direction 
of the actual effect. 

With regard to vocal metrics, participants with ASD 
exhibited a larger standard deviation of the F0 of their 
voice when conveying sadness during noncontextual 
monosyllabic imitation and production tasks. Moreover, 
the time point of the minimum and maximum values of 
F0 during the imitation task occurred earlier in the ASD 
cohort when the emotion to be conveyed was sad or
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happy. The maximum value of F0 also occurred earlier in 
the ASD cohort while repeating an afraid “oh.” The SNR 
during the noncontextual monosyllabic imitation and pro-
duction tasks conveying fear was lower in the ASD 
cohort. The ASD cohort also had a greater jitter value 
during the noncontextual monosyllabic production task 
and a lower CPP value while imitating an afraid “oh.” 

In the case of facial metrics, when participants with 
ASD produced an angry “oh” for the noncontextual 
monosyllabic production task, an afraid “oh” for the con-
textualised monosyllabic production task, and a noncon-
textual sentential production conveying fear, they had a 
smaller eye opening than the control group. Acceleration 
of the lower lip during a sad noncontextual monosyllabic 
production of “oh” was higher in the ASD group and 
lower during an angry sentential production. During a 
happy noncontextual monosyllabic production, children 
with ASD had a smaller lip width than controls. Also, 
during a happy sentential production, the ASD group had 
smaller average eyebrow vertical displacement. 

Average human rater accuracy for facial affect rec-
ognition was 54% (47% for the ASD cohort and 65% for 
NTC). Average human rater accuracy for vocal affect rec-
ognition was 56% (53% for ASD and 63% for NTC). For 
all tasks and emotions, human rater accuracy in emotion 
perception for facial data, defined by the agreement 
between the rater’s emotion classification and the prompted 
emotion, was significantly different between the two 
cohorts (U = 487.00,  p = .002), indicating that the ASD 
group was less effective in communicating the prompted 
emotions than the control group. Lower human rater accu-
racy for the ASD cohort was seen across tasks: Task 1 
(U = 529.5,  p = .007),  Task  2  (U = 535.00,  p =  .018), Task 
3 (U = 436.00,  p = .002), and Task 4 (U = 420.00,  p  <
.001). When rater accuracy of video data was split by emo-
tions, lower accuracy for the ASD cohort was observed for 
three of the four emotions: happy (U = 562.50,  p =  .016), 
sad (U = 576.00,  p = .023), afraid  (U = 393.00,  p <  .001), 
and angry (U = 703.50,  p =  .334). 

Overall human rater accuracy of emotion perception 
based on speech data was not significantly different 
between the two cohorts (U = 463.50, p = .142). Such dif-
ferences were also not seen when data were split by tasks: 
Task 1 (U = 474.00, p = .277), Task 2 (U = 469.00, p = 
.201), Task 3 (U = 404.00, p =  .052), Task 4 (U = 511.50, 
p = .531). While overall rater accuracy and accuracy for 
combined emotions for each tasks did not show significant 
group differences for speech data, when perceptual accu-
racy of speech data was compared for each emotion 
across tasks, the ASD group demonstrated significantly 
poorer vocal communication of happiness (U = 343.50, 
p = .005) and sadness (U = 411.00, p = .048). Significant 
K
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group differences were not identified for vocal communi-
cation of fear (U = 523.50, p = .535) and anger (U = 
649.00, p = .373). 

Research Question 2: Effect of Production 
Task Demands on Facial and Vocal Metrics 

From Figure 5, it can be observed that differences 
in facial and vocal metrics between the two cohorts can be 
captured even with monosyllabic or shorter utterances. In 
fact, only three metrics showed differences when the partici-
pants produced sentence-length utterances (Task 4). Inter-
estingly, all three metrics were facial metrics (eye opening, 
lower lip acceleration, and eyebrow displacement). 

The prompt during Task 3 included an illustrated 
narrative providing additional emotional context. Notably, 
only one facial metric (eye opening during the expression 
of fear) showed differences between the two cohorts in 
Task 3. All other differences in objective metrics were cap-
tured when additional narrative context was not provided. 

Research Question 3: Effect of 
Produced Emotion 

Twenty-seven of the 30 metrics aggregated across 
Tasks 1 and 3 showed a significant effect of emotion (see 
Supplemental Material S1). The three metrics that did not 
show an effect of emotion were: F2 slope, time point of 
minimum F0, and mean symmetry ratio of the mouth sur-
face area. Four of the 27 metrics showing a significant 
effect of emotion also showed a significant interaction 
effect between cohort and emotion (see Supplemental 
Material S1). These metrics were average lip width, average 
velocity of the lower lip, average acceleration of the lower 
lip, and average jerk of the lower lip. Post hoc pairwise 
Wilcoxon signed-ranks tests were run to test for which 
emotion the metrics were significantly different between 
cohorts. Only one pairwise test was statistically significant 
(see Table 3); mean velocity of lower lip was significantly 
higher in the NTC cohort as compared to the ASD cohort 
when the emotion was happy (p = .03, Hedges’s g = 0.60).  

Research Question 4: Group Differences 
in Imitation 

There were differences only in speech metrics and 
not facial metrics when participants were asked to repeat 
a monosyllable after listening to an audio stimulus, which 
is not surprising given that participants were only asked 
to imitate the vocal expression. The differences in vocal 
imitation were related to the standard deviation of F0, 
time points of maximum and minimum values of F0, 
SNR, and CPP.
othare et al.: Audiovisual Metrics of Affect Production in Autism 9
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Table 3. Metric and emotion aggregated across Tasks 1 and 3 showing a significant difference between cohorts. 

Metric Emotion 

Post hoc pairwise test (Wilcoxon signed-ranks) 

p 
Hedges’s g (measure of effect size) 

Control > ASD 

Lip width average Happy .06 0.56 

Mean velocity of lower lip Happy .03 0.60 

Mean acceleration of lower lip Happy .06 0.46 

Mean jerk of lower lip Happy .10 0.38 

Note. ASD = autism spectrum disorder group. 
Research Question 5: Objective 
Classification Accuracy 

ROC curves for the classification experiment between 
cohorts can be seen in Figure 6. When all metrics, across 
emotions, with an absolute effect size greater than 0.6 
were used as features in the classifier, both facial (AUC = 
.79, Brier score = 0.17) and speech metrics (AUC = .74, 
Brier score = 0.20) performed well above chance with the 
facial metrics outperforming the speech metrics. The per-
formance, as measured by the AUC, of the classifier 
model was slightly better than individual modalities when 
metrics from both modalities were considered (AUC = .8, 
•

Figure 6. (a) ROC curves for speech metrics alone, facial metrics alone,
across emotions, with absolute effect size greater than 0.6 were conside
sad emotion metrics. (d) ROC curves for angry emotion metrics. (e) ROC
acteristic; AUC = area under the curve.
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Brier score = 0.18). When metrics related to happy utter-
ances were considered, facial metrics (AUC = .67, Brier 
score = 0.21) again outperformed the speech metrics 
(AUC = .62, Brier score = 0.22) in classification of the 
two cohorts. A multimodal model, with both speech and 
facial metrics, was again slightly better than the individual 
modalities alone (AUC = .69, Brier score = 0.20). For sad 
utterances, the speech metrics performed much better 
(AUC = .73, Brier score = 0.20) than the facial metrics 
(AUC = .59, Brier score = 0.22), and the performance did 
not improve drastically when a combination of both 
modalities was used (AUC = .72, Brier score = 0.20). 
Since there were no differences in speech metrics for angry
 and a combination of speech and facial metrics when all metrics, 
red. (b) ROC curves for happy emotion metrics. (c) ROC curves for 
 curves for afraid emotion metrics. ROC = receiver operating char-
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utterances between the two cohorts, a classifier model with 
the two facial metrics showing a difference between the 
two cohorts was run (AUC =.64, Brier score = 0.21), and 
its performance, while not being superlative, was well 
above chance. For afraid utterances, speech metrics 
(AUC = 0.71, Brier score = 0.20) were slightly better at 
classifying the cohorts than the facial metrics (AUC = .67, 
Brier score = 0.22). A combination of both modalities had 
a much better performance for afraid utterances (AUC = 
.78, Brier score = 0.18).
Discussion 

In this study, we investigated which audiovisual met-
rics associated with affect production and imitation 
showed significant differences between children with ASD 
and NTCs. We examined effects of task demands and spe-
cific emotions on group differences and used a leave-one-
out logistic regression classifier model to evaluate the effi-
cacy of facial and vocal metrics in classifying groups. 

With regard to Research Question 1, we identified 
group differences in objective facial and vocal metrics 
within each emotional category and across-task condi-
tions. We also identified relatively lower human rater 
accuracy in identifying affect conveyed by the ASD 
cohort, which is to be expected given that this group is 
partially defined by deficits in nonverbal communication. 
These differences in human accuracy, in conjunction with 
prior work demonstrating prediction of human rater per-
formance from objective metrics (Demopoulos et al., 
2024), suggest that the metrics are capturing differences in 
ability to communicate affect as opposed to nonspecific 
differences in facial movement and vocal expression. Spe-
cifically, in this prior study, we found that the linear com-
bination of objective facial metrics predicted 32%–60% of 
the variance in human rater accuracy for facial APTs and 
the linear combination of objective vocal metrics predicted 
41%–58% of the variance in human rater accuracy for 
vocal APTs. This suggests that the automatically extracted 
metrics are measuring information that human raters are 
using in making affective judgments. 

With regard to Research Question 2, effects of task 
demands, while objective metrics extracted from all tasks 
were useful in distinguishing between the two cohorts, 
there were more metrics that significantly distinguished 
groups in Tasks 1 and 2 (noncontextual monosyllabic 
production and imitation) than those from Tasks 3 and 4 
(contextualized monosyllabic and noncontextual sentence-
length production). This suggests that the task with most 
minimal expressive and receptive language demands (i.e., 
brief verbal instructions and requiring production of only 
a monosyllabic utterance) was equally, if not more, 
Kot
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effective in identifying differences in affect production 
associated with autism. This also suggests that assessment 
via the APT can be accessible to individuals who require 
minimal language demands for valid assessment. Notably, 
for Tasks 3 and 4, only facial and no vocal metrics 
showed differences between children with ASD and con-
trols. The nature of the tasks, prompted monosyllabic 
speech after a narrative/picture stimulus and noncontex-
tual sentence-length productions, may have a role to play 
in this observation. Specifically, both of these tasks have 
greater verbal demands in different ways. For example, 
greater receptive language skills are necessary to under-
stand the narrative, even though only a monosyllabic 
utterance is required for vocal response to the contextual 
monosyllabic condition. In contrast, greater speech/ 
expressive language skills are necessary to produce the 
longer sentence-length utterance, while the semantic con-
tent of the sentence is not meaningful to affective vocal 
production in and of itself. 

Regarding Research Question 3, interaction effects 
between group and prompted emotion, a main effect of 
emotion was identified across most objective metrics, as 
expected given that these metrics were selected based on 
their relevance to communicating affect. An interaction 
between group and emotion was also identified for several 
facial metrics related to mouth movements and positions. 
Taken together with human rater data indicating overall 
less effective communication of facial affect in the ASD 
group, these interaction effects suggest that poor affect 
production in the ASD group may be associated with inef-
fective use of mouth movements and position during facial 
expression. Indeed, we observed smaller lip width during 
monosyllabic production of speech conveying happiness in 
the ASD cohort. A happy vocalization is often accompa-
nied by smiling where the mouth orifice is widened (Shor, 
1978; Tartter, 1980). Smaller lip width in the ASD cohort 
during happy emotional speech production may indicate 
the absence of an accompanying smile, therefore indicat-
ing an inability to express the emotion successfully. 

Several other group differences were identified under 
specific emotion conditions and specific tasks. For exam-
ple, when conveying a sad emotion, participants with 
ASD had a greater standard deviation of the F0 of their 
voice as compared to controls during both noncontextual 
monosyllabic production and imitation tasks conveying a 
sad emotion. Relatedly, according to the human rater 
accuracy data, the ASD cohort demonstrated poorer vocal 
communication of sadness. Indeed, increased pitch varia-
tion during speech production in general and emotional 
speech production in particular has been observed quite 
consistently in studies of individuals with autism described 
as “high functioning” (Diehl et al., 2009; Edelson et al., 
2007; Fosnot & Jun, 1999; Nadig & Shaw, 2012). This
hare et al.: Audiovisual Metrics of Affect Production in Autism 11
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increased pitch variability has been shown to be language 
agnostic and is not associated with the language ability of 
the ASD participants (Bonneh et al., 2011; Green & 
Tobin, 2009; Sharda et al., 2010). 

We also observed that during emotional speech pro-
duction, maximum F0 and minimum F0 time points 
occurred earlier in the ASD cohort. Atypical prosody has 
been documented in both receptive and expressive speech 
in high-functioning autism (McCann & Peppé, 2003; 
McCann et al., 2007; Peppé et al., 2007). Individuals with 
ASD are said to experience difficulties with social accep-
tance due to the atypical prosody of their speech (Paul 
et al., 2005; Shriberg et al., 2001), underscoring that pro-
sodic differences may functionally impact paralinguistic 
aspects of vocal communication. Specifically, it has been 
postulated that extreme pitch variation in ASD could be 
placed arbitrarily in the utterance, thus rendering the 
acoustic cues of the speech nonmeaningful to listeners 
(Nadig & Shaw, 2012). Understanding the root of these 
prosodic differences could direct novel approaches to 
improving communication skills via targeting the barriers 
to effective use of ancillary acoustic cues of vocalization 
(not only what is said but how it is said). 

The SNR was lower in the ASD cohort during the 
noncontextual monosyllabic imitation and production of 
“afraid.” Furthermore, metrics indicative of voice quality 
(i.e., jitter and CPP) were higher and lower, respectively, 
in the ASD cohort for the afraid utterances. Group differ-
ences in human rater accuracy of fear were not identified, 
however, suggesting these may be vocal differences not 
associated with affective communication. 

Additionally, we also observed lower average verti-
cal displacement of the eyebrows during happy noncontex-
tual sentence-length production and a smaller average eye 
opening during noncontextual monosyllabic productions 
of fear and anger in the ASD cohort. These results, com-
bined with the lower human rater accuracy for the ASD 
cohort, suggest that individuals with ASD exhibit reduced 
expressivity of nonverbal cues of emotion during affect 
production. The eyes and eyebrows have a significant role 
to play in the expression of distinct human emotions 
(Perveen et al., 2012). Furthermore, reduced eye contact is 
also common in individuals with ASD. The findings of 
reduced facial expressivity in the eye region of the face 
may be associated with lack of experience in reading those 
cues in others or, alternatively, a lack of salience for those 
movements resulting in a tendency not to produce them 
or watch for them in others. 

With regard to Research Question 4, group differ-
ences in affect imitation (Task 2), only speech acoustic 
metrics showed large differences. No emotional cue 
was provided in this task apart from the paralinguistic 
•12 Journal of Speech, Language, and Hearing Research 1–16
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information in the audio stimulus (a noncontextual mono-
syllabic vocalization). Furthermore, there was no facial 
stimulus to imitate and no instructions regarding produc-
tion of facial expression. Differences in speech metrics but 
not in facial metrics for this task may suggest that both 
cohorts had a similar range of facial motoric productions 
during these vocal imitations, but the ASD cohort differed 
in the reproduction of the paralinguistic information in 
the actor’s speech sounds. Interestingly, the average rater 
accuracy was still relatively lower for facial imitation in 
the ASD group despite failure to identify differences in 
objective facial metrics. This may suggest that both groups 
performed a similar range of facial movements under non-
directed conditions, but the typically developing controls 
group produced more facial expressions that were congru-
ent with the vocal affect of the stimulus prompt and the 
ASD group produced facial expressions that were less 
communicative of the emotion being conveyed in the 
vocal affect of the stimulus prompt. These results are con-
sistent with prior studies reporting reduced multimodal 
affective communication (Hubbard et al., 2017; Loveland 
et al., 1994; Sorensen et al., 2019). 

Finally, for Research Question 5, we evaluated clas-
sifier models to distinguish between ASD and controls. In 
these analyses, we observed that classifiers performed best 
when metrics across all emotions were considered. How-
ever, there were slight differences in model performance 
when individual emotions were considered. For utterances 
that were supposed to convey sadness and fear, speech 
acoustic metrics performed better than facial metrics. 
When it came to happy utterances, there was an equal 
number of speech and facial metrics showing differences 
between the two cohorts, but the facial metrics had better 
classification performance. Interestingly, for anger, only 
facial metrics showed large differences between the two 
cohorts, and their classification performance was well 
above chance. For most of the classification models 
though, the combination of both modalities (speech and 
facial) was either more effective than individual modalities 
or equivalent to the performance of the better performing 
modality (speech metrics for sadness). This observation 
underscores the importance of a multimodal framework 
approach in studying a complex disorder like ASD with sig-
nificant cross-domain atypicalities (C.-P. Chen et al., 2017; 
J. Chen et al., 2020; Kothare et al., 2021; Samad et al., 
2017). The observed AUCs are comparable to prior classifi-
cation studies with multimodal features (Cho et al., 2019). 

The current study comes with a set of limitations. 
First, while this study focused on measurement of objec-
tive features of facial and vocal expression of emotion 
under cued conditions in order to standardize the emotion 
intended to be communicated across participants, it is 
not the same as measuring emotional expression under
Terms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



spontaneous environmentally provoked conditions. The 
objective metrics extracted essentially measure the partici-
pants’ ability to consciously and intentionally produce or 
act out the emotions. This distinction is important as nat-
ural expression of emotion may not communicate the 
experienced emotion directly but may be influenced by 
what one intends to communicate (i.e., one may not wear 
one’s heart on one’s sleeve for certain reasons and in cer-
tain contexts). There may be differences in communicative 
intentions that would distinguish ASD from other groups 
in a more naturalistic assessment of expressive emotional 
communication. Future studies should investigate the dif-
ferences between objective measures of emotional expres-
sion upon cue and emotional expression in the natural 
environment. Second, the control cohort was smaller than 
the ASD cohort, and future investigations should consider 
larger and more equally matched cohorts. Third, it cannot 
be ascertained that group differences between the cohorts 
arise solely due to functional deficits. Differences observed 
could just be a reflection of how the two groups 
responded to task prompts. It must be noted that the 
results of this study may only be generalizable under cer-
tain contexts and prompts. Lastly, although the doctoral 
student did not interact with the participants during data 
collection, their presence in the room may have affected 
performance differentially between cohorts. Future studies 
involving remote data collection in natural environments may 
help answer some of these questions. That being said, it is 
worth underscoring that the platform described in this study 
can also be accessed remotely using any device equipped 
with a webcam and a microphone (Ramanarayanan et al., 
2020). This is especially important considering that there is 
a growing need to remove barriers and expand telehealth 
services in children with neurodevelopmental disorders 
(Masi et al., 2021). 

In conclusion, we found that audiovisual metrics 
extracted through a multimodal conversation-based dia-
logue platform show significant differences between chil-
dren with ASD and NTCs and may have potential for 
monitoring behavior in ASD. Both monosyllabic and 
sentence-length prompts may have their own advantages 
in evoking emotional expressions. Monosyllabic utterances 
would make the task more accessible to people who are 
minimally verbal. Sentence-length utterances may capture 
nuances of speech acoustics and facial movement due to 
the greater length of data available per utterance; how-
ever, our current findings suggest that a monosyllabic 
utterance may be sufficient to effectively measure affect 
production. We also observed that emotional context 
in the form of a narrative, which requires more skill in 
receptive language than other tasks, was not necessary to 
evoke group differences in emotional expressions. Future 
research examining psychometric performance of these 
Kot
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different task conditions is needed to determine minimum 
required task demands for sensitive measurement while 
maximizing inclusivity and accessibility of the task. 
Emotion-specific and task-specific differences in metrics 
and model performance were also observed. Furthermore, 
we found that a multimodal approach is important to 
classify children with ASD from controls. This is even 
more important because of the emotion-specific differences 
in classification performance of the individual modalities. 
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