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Abstract
We present a framework for characterising the statistical and
clinical relevance of speech and facial metrics in Parkinson’s
disease (PD) extracted by a multimodal conversational plat-
form. 38 people with PD (pPD) and 22 controls were recruited
in an ongoing study and were asked to complete four interac-
tive sessions, a week apart from each other. In each session, a
virtual conversational agent, Tina, guided participants through
a battery of standard tasks designed to elicit speech and facial
behaviours. Speech and facial metrics were automatically ex-
tracted in real time, several of which showed statistically sig-
nificant differences between pPD and controls. We explored
which of these differences were greater than measurement error,
a threshold defined as the minimally detectable change (MDC).
Furthermore, we computed the minimal clinically important
difference (MCID) with respect to the Communicative Partic-
ipation Item Bank short form (CPIB-S) scale for these select
metrics. Our results show that differences in metrics like dura-
tion and fundamental frequency (F0) of speech are captured be-
yond measurement error. We also discuss several confounding
factors that need to be taken into consideration before making
any clinical interpretation of changes in these metrics.
Index Terms: multimodal dialogue system, audiovisual ana-
lytics, parkinson’s disease, remote patient monitoring, minimal
detectable change, minimal clinically important difference.

1. Introduction
Remote patient monitoring is witnessing a growing demand in
the field of neurological and psychiatric diseases due to lim-
ited access to specialist care [1], significant technological break-
throughs [2] and the ongoing COVID-19 pandemic [3]. Apart
from improving ease and frequency of access, the rich data cap-
tured in the natural environment of patients’ homes can enhance
our understanding of the patients’ conditions and tailor their
treatment to suit their disease progression [4, 5]. This could im-
prove outcomes for individual patients while substantially de-
creasing healthcare costs. The number of pPD over the age of
50 is projected to be 8.7 million in Western Europe’s 5 most
and the world’s 10 most populous nations by the year 2030 [6],
underscoring the need to develop and adopt digital aids for PD
care and management.

Motor speech is severely impacted in PD with up to 90% of
patients exhibiting dysarthria at some point during the course
of the disease [7, 8]. This has a direct and indirect impact on
quality of life in pPD. It is therefore important to track dete-
rioration in speech production due to disease progression and

any improvement due to speech therapy or breathing exercises.
Current practice requires pPD to seek specialist care on a peri-
odic basis which comes with geographic, economic and logisti-
cal constraints. Remote patient monitoring has the potential to
break these barriers.

Previous work has shown that acoustic characteristics of
Parkinsonian speech are distinct enough to be used as digital
biomarkers [9, 10]. The articulatory and orofacial kinematics
that cause these acoustic consequences also have tremendous
potential as biomarkers [11, 12, 13]. It has become increas-
ingly important to approach remote patient monitoring from a
multimodal perspective as it provides more information than a
biosignal from a single modality [14, 15].

In this paper, we present one such remote patient monitor-
ing study that utilises a cloud-based multimodal dialogue plat-
form with a virtual conversational agent, Tina, who walks par-
ticipants through on-demand interview sessions. Participants
engage in a variety of standard speaking exercises in each ses-
sion. Audiovisual frames are recorded and speech and facial
metrics are extracted automatically in real time. We aim to an-
swer the following questions about the statistical and clinical
importance of these metrics:

1. Which metrics from which speaking exercises show sig-
nificant differences between pPD and controls and how
reliable are these metrics? What is the detected differ-
ence in median values between the two cohorts?

2. For metrics that show differences, what value represents
a difference or change above and beyond any measure-
ment errors (minimally detectable change (MDC) / sta-
tistical utility)?

3. For metrics that show differences, what value might rep-
resent an actual clinical change tied to physiological
manifestations of PD (minimal clinically important dif-
ference (MCID) / clinical utility)?

To the best of our knowledge, questions 2 and 3 above have
not been previously explored in the context of PD, although
prior work has talked about MDC and MCID in dysarthric
speakers with Amyotrophic Lateral Sclerosis (ALS) [16].

2. System
The virtual conversational agent, Tina, was developed on the
Modality platform, a cloud-based multimodal dialogue system
[2, 17]. Tina can conduct customised dialogue-based interviews
based on standard tasks used in the clinic to assess neurologi-
cal and mental health. Audiovisual metrics, answers to survey
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questionnaires and other meta information related to the session
can all be accessed by a clinician on a dashboard which is de-
signed to provide a high-level overview of the session as well
as a breakdown of recordings and metrics per interaction turn.

3. Data

Participants were recruited through the Purdue Motor Speech
Lab at Purdue University. After explaining the nature of the
study and what it involved, informed consent was obtained from
participants. The Montreal Cognitive Assessment (MoCA) [18]
was administered to every participant to test for cognitive im-
pairment. Inclusion criteria for pPD were: between 30 and 85
years of age, a diagnosis of idiopathic PD, availability of a de-
vice with a microphone and a camera, internet access, no hear-
ing and vision loss (self-reported) and fluency in English. Ex-
clusion criteria were: diagnosis of a neurological disease other
than PD; a history of head and neck cancer / surgery, voice
disorder, pulmonary disease, smoking (in the past 5 years),
more than moderate cognitive impairment (MoCA score < 10).
Controls were age-matched and sex-matched. This study in-
cludes data from 60 participants (see Table 1) collected between
November 2020 and January 2022. Participants were asked to
complete four sessions, a week apart from each other. Some
participants completed fewer or more than the suggested num-
ber of sessions, resulting in a total of 243 sessions.

The conversational callflow required participants to do the
following speaking exercises: (a) sustained vowel (held steady
/A/ , up-or-down pitch glide /i/), (b) read speech: speech intelli-
gibility test (SIT) sentences, sentences that elicited variation in
intonational prosody, rainbow passage, (c) story retells and (d)
spontaneous speech (Spont) on any topic of their choice with
a few topics suggested on the screen. At the end of each ses-
sion, participants filled out the Parkinson’s Disease Question-
naire (PDQ-39) [19] and the Communicative Participation Item
Bank short form (CPIB-S) [20].

4. Methods & Results

4.1. Extraction of metrics

Speech duration metrics such as speaking duration (s), articu-
lation duration (s) and percent pause time (%) were extracted
using Praat [21]. Speaking rate and articulation rate (words
per minute) were calculated by dividing the number of expected
words in the reading exercises by the duration. Canonical tim-
ing agreement (CTA, %) was computed for SIT using the Mon-
treal Forced Aligner [22]; CTA measures how similar the tem-
poral structure of the participant’s utterance was as compared
to Tina’s. Praat algorithms were also used to calculate spec-
tral metrics: fundamental frequency (F0, Hz), jitter (%), for-
mant frequencies for F1, F2 and F3 (Hz), F2 slope (Hz/s), cep-
stral peak prominence (CPP, dB) and harmonics-to-noise ra-
tio (HNR, dB); energy-related metrics: shimmer (%), signal-
to-noise ratio (SNR, dB) and articulation intensity (dB). Facial
metrics were extracted using the face detector in the dnn module
of OpenCV [23]. Facial landmark extraction was done using the
Dlib facial landmark detector [24]. To account for differences
in camera distances, intra-participant facial normalisation was
done by dividing facial metrics in pixels by the inter-caruncular
distance between the participant’s eyes in pixels. More details
about metric extraction can be found in [25].

4.2. Effect sizes

Speech and facial metrics were z-scored by sex to account
for sex-specific differences. For every metric, non-parametric
Kruskal-Wallis tests were performed at α = 0.001. Metrics
that showed significant differences between pPD and controls
and survived Benjamini-Hochberg correction [26] to control for
false discovery rate are shown in Figure 1.

pPD exhibited greater SNR than controls in terms of inten-
sity during various tasks. They also had greater values of min-
imum fundamental frequency (F0) during spontaneous speech,
formant frequency of the second formant (F2) during sustained
phonation of /A/, upward jaw velocity and acceleration while
reading the rainbow passage. On the other hand, the average
values of higher order jaw kinematic metrics like velocity, ac-
celeration and jerk were smaller in pPD than controls during
spontaneous speech (maximum upward and downward kine-
matics also showed differences but were excluded from the plot
to avoid redundancy) and downward pitch glide of the sustained
vowel /i/. pPD also displayed shorter articulation duration while
sustaining phonation of the vowel /i/ with an upward pitch glide,
shorter articulation and speaking duration during spontaneous
speech, and lower CTA with the SIT prompts as determined by
the Montreal Forced Aligner. The test-retest reliability coef-
ficient of these metrics was calculated as the average absolute
Pearson’s correlation coefficient between sessions 1 and 2, ses-
sions 2 and 3 and sessions 3 and 4 (displayed in parentheses in
Figure 1). Speech metrics showed better test-retest reliability
than facial metrics.

Figure 1: Effect sizes of speech and facial metrics that show
statistically significant differences between controls and pPD
at α = 0.001. Test-retest reliability reported in parentheses.
Spont: Spontaneous Speech, SNR : signal-to-noise ratio, F0
: fundamental frequency, F2: second formant frequency, SIT:
sentence intelligibility test, CTA: Canonical Timing Agreement

4.3. MDC

The MDC has been widely used in the fields of physical ther-
apy, occupational therapy, rehabilitation and health care to de-
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Table 1: Participant demographics: Age, MoCA scores and years since diagnosis are presented as: median; mean (standard deviation)

Group Sex Age (years) MoCA score Years since diagnosis

Controls 18F/4M 65; 63.46 (11.08) 28; 27.55 (1.92) -
pPD 19F/19M 71; 67.48 (9.30) 27; 26.06 (3.63) 5; 7.89 (6.16)

fine any change that is greater than measurement error [27, 28].
In recent work [16], the authors extended the concept of MDC
to speech outcomes to monitor dysarthria progression in ALS.
MDC at 95% confidence level is defined in equation 1 below:

MDC95 = 1.96×
√
2× SEM (1)

SEM is the standard error of measurement for a particular met-
ric calculated from all participants across their four sessions and
is calculated using equation 2 below:

SEM = σ ×
√

1− ρ (2)

where σ is the standard deviation of the distribution of the met-
ric and ρ is the average absolute Pearson’s correlation coeffi-
cient, annotated in parentheses in Figure 1. Using this method,
an MDC value was calculated for every speech and facial met-
ric. Figure 2 shows those metrics for whom the detected dif-
ference between the two cohorts (calculated as the difference in
median values) was greater than the MDC value for that partic-
ular metric. To enable displaying all metrics in the same plot,
we expressed MDC and detected differences as a percentage of
the range of values detected across pPD and controls.

4.4. MCID

The MCID is defined as the smallest change in a domain that
is thought to be clinically relevant or has an impact on patients,
clinicians or caregivers [16, 29]. MCID can be considered as
a threshold for a change that would be treated as an improve-
ment or deterioration in function. The MCID estimate must be
larger than the MDC value for a particular metric for it to have
any clinical utility. To tie MCID to clinical meaningfulness, it
requires an external anchor in the form of a clinical gold stan-
dard assessment. In most cases, this is a survey instrument used
by clinicians. In this study, we used changes in a participant’s
CPIB-S T score (on a logit scale) [20] from session 1 to ses-
sion 4 which would be indicative of a deterioration in motor
speech function that impacted communicative speech participa-
tion. Previous work [16] in ALS has considered one question
pertaining to speech as an external anchor to calculate MCID.
We explored the possibility of using question 34 of the PDQ-39
scale (”Due to having Parkinson’s disease, how often during the
last month have you had difficulty with your speech?”) as an
external anchor. However, only 4 pPD showed a change in their
score that signified worsening from session 1 to session 4.

For MCID, we only considered metrics for pPD because
any changes in metrics for controls are not likely to have any
clinical significance. Figure 3 represents a histogram of these
changes for all pPD who had CPIB-S T scores for sessions 1
and 4. The standard error of the mean of this distribution was
0.74.

A subset of pPD were classified into two sub-cohorts based
on their change in CPIB-S T score:

1. No change: Change in CPIB-S T score = 0 (n = 8)

2. Decline: Deterioration in CPIB-S T score < -0.74 or

more than the standard error of the mean of the distri-
bution (n = 13)

Next, in order to calculate the MCID value for each metric
that showed a detected difference greater than MDC in Figure
2, we used receiver operating characteristic (ROC) curves of a
simple binary classifier to determine how well the changes in
each metric differentiated between the two sub-cohorts defined
above. These analyses were performed using the pROC [30],
ROCR [31] and OptimalCutpoints [32] packages in R [33]. The
optimal cutpoints, or MCID, for the metrics in Figure 2 were the
points on the ROC curves that represented maximum sensitivity
and maximum specificity (top left point on the ROC curve) of
the classifier. MCID values were then expressed as a percent-
age of the observed range to allow comparison with MDC and
detected difference values.

5. Discussion
To the best of our knowledge, the current study is the first that
attempts to define a framework for MDC and MCID of motor
speech outcomes in PD.

We first investigated which speech and facial metrics ex-
tracted by the remote patient monitoring platform showed dif-
ferences between pPD and controls. Next, we determined MDC
values for all metrics; six speech metrics related to duration and
fundamental frequency of speech showed differences between
the two cohorts that were greater than the MDC. This suggests
that differences in these metrics are beyond any measurement
errors. An important point to consider here is that since MDC
is a function of the distribution of data (as seen in equation 1),
larger datasets would provide an even better estimate for each
metric’s MDC value because the distribution will tend to be
normal per the Central Limit Theorem [34]. No facial metric
appears in Figure 2, perhaps because they have a larger range
making their MDC values much larger than any detected differ-
ences. Another possible explanation for the absence of facial
metrics in Figure 2 is poorer reliability numbers for these met-
rics as compared to speech metrics seen in Figure 1.

The MCID values for the metrics in Figure 2 were not
larger than their MDC values. One reason for this could be
that changes in the external anchor or CPIB-S T scores may be
affected by perceived changes in communicative participation
by individuals which are not accurately captured by the objec-
tive speech and facial metrics considered in this study. A fusion
of subjective and objective changes could be considered while
tracking clinical outcomes or disease progression.

Another alternative explanation could be that participant-
reported survey instruments in general and the CPIB-S in partic-
ular are inadequate in capturing all aspects of expressive com-
munication.

A third possibility could be that since PD is not a rapidly
progressing disease, changes in metrics and survey scores over
a span of 4 weeks may not represent the ground truth of dis-
ease progression like it does in other fast-progressing neurolog-
ical disorders like ALS. Indeed not all pPD showed a change
in metrics in the same direction despite a deterioration in their
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Figure 2: Metrics with detected differences between the median values of the two cohorts (pPD and controls) greater than MDC

Figure 3: Histogram of changes in CPIB-S T scores from ses-
sion 1 to session 4

CPIB-S T scores. Relatedly, most of the pPD in this study may
not be severely impacted by dysarthria. What exactly does an
increase in spontaneous speech articulation duration indicate?
Does it mean the participant feels well enough to speak for a
longer duration or does it indicate that the articulation rate for
the participant has dropped due to dysarthria? In future work,
we plan to look at articulation rate in spontaneous speech based
on transcriptions of user turns. Would combinations of metrics
provide a better perspective when it comes to MCID? A study
with a larger, more heterogeneous cohort could also be useful
towards defining MDC and MCID values in PD.

Lastly, all pPD took part in this study during the on-state
of PD medication. The effects of this medication in conjunction
with other interventions like speech therapy, breathing and other
vocal or non-vocal exercises need to be factored in for accurate
estimation of the statistical and clinical utility of speech and
facial metrics.

6. Conclusions
In conclusion, we attempted to define a framework for MDC
and MCID in Parkinson’s disease. With the current data, we
were unable to obtain MCID values that were greater than the
MDC values. MDC is a function of the SEM or the distribution
of the data. The MDCs in this study may have been larger be-
cause of a relatively smaller sample size. Future work should
focus on what SEM or sample size is needed to obtain MDC
and MCID values that would prove useful to clinicians, patients
and caregivers.
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