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eSpeech

eFacial

O i e The use of a remote assessment platform allows for rapid recruitment and high participant
eLinguistic retention.

eLimb-Motor e Combining multiple facial, speech, and cognitive biomarkers allows to reliably distinguish MCI
eEye-Gaze patients from healthy controls.

ePose e Asking patients to self-report their most bothersome problems provides valuable insights about
ePROP what matters to patients and how MCI affects their daily life.

Figure 1: Schematic diagram of the Modality.Al dialog platform.

Introduction Clinical Validation

e Mild cognitive impairment (MCI) describes cognitive decline that is stronger than the decline
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expected due to normal aging. e Non-parametric Kruskal-Wallis tests were
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e About 10-20% of adults who are at least 65 years old have MCI. performed for each individual feature to
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e Identifying people with MCI has the potential to allow for early pharmaceutical interventions determine which of them show a statistically

Metrics
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before strong damage to the central nervous system has occurred. significant difference (a = 0.01) between
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cohorts.
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e Is it feasible to rapidly recruit an elderly population with MCI for a remote assessment of speech
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and cognitive function through a multimodal dialog platform and achieve high retention? B S S
Effect size (Glass' A)

e Pearson correlations were computed between
e Can the extracted biomarkers be used to reliably distinguish MCI patients from healthy controls?

Figure 3: Effect sizes and test-retest reliabilities of
statistically significant (a = 0.01) speech, facial, and

features. Positive effect sizes mean larger
values for MCI patients.

features of participants’ subsequent sessions
to assess the test-retest reliability of the

features.

e 200 participants (100 people with MCI and 100 healthy controls) were recruited via the U.S. Classifier
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e 2 assessments (one week apart) per participant administered through the Modality platform. with mostly acceptable or good reliability (Fig. g facial only 059 058 059 0.54
Cﬁ text only 0.62 059 0.62 0.6l
e During each assessment a virtual guide named Tina guides participants through 23 structured 3). = cognitive only 057 058 055 055
. o . N . § combo - all 0.57 0.56 0.61 0.56
exercises 1o elicit speech, facial and cognitive behaviors. = combo - significant | 0.75 0.73 0.69  0.75

e Four different classifiers were employed for

e 181 participants completed both assessments leading to a retention rate of over 90%.

Table 3: Classification performance as measured by

binary classification experiments using 5-fold  area under the ROC curve (AUC) across multiple

Cohort # Participants Age (years) o classifiers (LR: Logistic Regression; RF: Random
MCI 90 (9F / 81M) 71.08 (9.10) cross-validation. Forests; MLP: Multi-layer Perceptron; SVM: Support
' ' Vector Machine) and feature sets.
Controls 91 (9F / 82M) 71.30 (8.59)
e The selected feature set had a strong 10-
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o . 0.8
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e Facial features are computed usin Mouth lip aperture/opening, lip width, mouth surface area,
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the data collection.

Table 2: Overview of the extracted features across modalities.

Feasibility Analysis

e Participants were asked to rate different

aspects of the interaction on a 5-point Likert  ze0

scale.

e The majority of participants rated most

aspects of their interaction with the system

as either “Satisfactory” (4) or “Very

satisfactory” (5).

Performance

250 Engagement

Number of Sessions
(=]
vl
<)

=
(=]
o

50

o_

Im Delay

I Relatability

B Understanding

Il Regularity

Il Experience

Il Intelligibility =l
EEE Interruption

1 2 3 4 5
Rating Value

Fig. 2: Bar chart illustrating the results of the UX survey.

Symptoms were automatically grouped into 14

domains.

MCI patients reported more cognition, gait,

psychiatric, and sleep problems (Fig. 5).

MCI patients reported nearly 2 times more
problems with anxiety or worry and speech,
nearly 4 times more problems with memory,
and 6 times more problems with falls than

healthy controls (Fig. 6).
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Figure 5: Self-reported problem domains affecting
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Figure 6: Self-reported symptoms affecting daily

Speech
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