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Abstract 
Impairments in nonverbal communication are a defining feature 
of autism spectrum disorder (ASD) and can manifest as 
difficulty with, or even complete lack of, communication of 
emotional states via production of facial affect or vocal affect. 
The purpose of this study was to evaluate psychometric 
properties of a novel multimodal dialog based Affect 
Production Task (APT) in children and adolescents (ages 8-17) 
with a diagnosis of autism (N=72) or neurotypical controls 
(N=37). Participants completed activities designed to quantify 
objective facial and vocal affect production ability using 
audiovisual capture. Criterion, ecological, and discriminant 
validity were assessed. Psychometric performance across task 
conditions, age, sex, and race-ethnicity also was examined. 
Results of this initial psychometric evaluation suggest that the 
APT is a valid measure of affect production abilities in children 
and adolescents, and that psychometric performance is 
invariant to age, sex, or race/ethnicity.  
Index Terms: facial affect, vocal affect, autism, assessment, 
psychometric properties, Affect Production Task 

1. Introduction 

1.1. Background 

Large scale efforts have been undertaken to address the 
challenge of precise measurement of social communication 
skills in autism spectrum disorder (ASD). From these efforts, 
several limitations were identified in even the best of available 
measures (e.g., subjectivity, high training burden, inadequate 
coverage of symptom domains, etc.) [1], [2]. Further, these 
measures collapse many symptom areas into general domains, 
whereas, social communication is complex, involving a range 
of related but distinct skills. As such, overly broad measures of 
social communication abilities are inadequate for quantifying 
these skills or being sensitive to their change over time. These 
limitations have led to a call for development of objective 
measures of social communication skills [3], [4] to address the 
unmet assessment needs of researchers and clinicians.  

A particular gap in measurement of social communication 
is in the domain of nonverbal communication. While the 
literature on language/verbal communication impairment in 
autism is vast and documents the significant functional impact 
of deficits in these skills, an important aspect of the success in 
generating this large body of literature is the availability of 
objective, performance-based measures of verbal 
communication skills. In contrast, objective, standardized, 
performance-based measures of nonverbal communication are 
scarce, and typically require laborious processing burden as 

described in the section to follow. This underscores the need to 
validate measures of nonverbal communication that can be 
feasibly employed to sensitively measure specific nonverbal 
skills in individuals with a range of functional abilities and 
capture changes in these skills over time. Only then can we 
begin to understand the impact of these specific deficits and 
develop empirically supported treatments. 

1.2. Prior research on measurement of affect production 

Prior affect production research in ASD has largely relied 
on parent report [5] or rater classification of emotion via a 
coding system (e.g., Facial Affect Coding System (FACS) [6]–
[9], AFFEX [10], Maximally Discriminative Movement 
Coding System (MAX) [11]) using tasks designed to naturally 
elicit emotional responses. While parent report measures are an 
important component of comprehensive assessment, they are 
vulnerable to the limitations of subjective report, such as 
underrepresenting measured abilities [12] or capturing 
nonspecific effects [13], [14]. Likewise, paradigms that 
spontaneously elicit emotion have methodological limitations 
(i.e., individual variability in the type and degree of emotional 
response cannot be controlled for). Thus, these paradigms 
cannot isolate affect production ability from emotional 
response. Further, emotion classification coding systems are 
training and labor intensive and require establishment and 
maintenance of reliability between raters.  

To address these issues, the use of digital phenotyping has 
been proposed to increase precision of measurement for 
quantifying a range of behaviors associated with autism, 
including nonverbal communication [4]. This digital 
phenotyping technology has been successfully applied to study 
facial affect production in children with autism via spontaneous 
emotional response [15], [16] and via a prompted facial affect 
production task of the Janssen Autism Knowledge Engine 
(JAKE) research assessment system, which uses FACET 
automated facial expression analysis software [16]. Because the 
JAKE assessment system was developed to assess a range of 
autism symptoms, its depth of assessment in each symptom 
domain is necessarily limited. Consequently, the JAKE affect 
production task is unimodal, assessing only facial affect 
production in isolation, whereas nonverbal communication 
impairment in ASD may manifest as impaired integration of 
verbal and nonverbal communication [17]. Likewise, studies of 
automated classification of vocal affect produced by individuals 
with ASD have been unimodal and/or have utilized an emotion 
elicitation design [18], [19], or have limited emotional 
specificity (i.e., positive, negative, neutral) [20], which is 
inadequate for capturing the nature of abnormal affect 
production in this population. In a systematic review of studies 



reporting automated emotion recognition systems in autism, 
several limitations were identified [21], including unimodal 
assessment of usually facial affect only, small and largely 
neurotypical samples with few females, use of spontaneous 
emotion elicitation paradigms which confound individual 
differences in emotional responsivity, inadequate measures of 
“ground truth”, and reliance on physiological signals for 
recognition of emotional states, when in fact, physiological 
signals carry information about emotional intensity, but not 
emotional classification. We have developed a novel Affect 
Production Task (APT) to address these limitations in prior 
approaches to the measurement of affect production in ASD. 

In prior work we have demonstrated the predictive validity 
of the APT in distinguishing between groups of typically 
developing and autistic youth [22]. Here, we further explore 
psychometric properties, including criterion, ecological, and 
discriminant validity, as well as psychometric performance 
across age, sex, race/ethnicity, and task conditions. 

2. Methods 

2.1. Participants 

Participants were 109 children and adolescents ages 8-17 
years who were diagnosed with autism spectrum disorder 
(ASD; N=72) or were typically developing controls (TDC; 
N=37). Sex assigned at birth was evenly distributed for the TDC 
group (18 male, 19 female) and was more balanced than 
population prevalence for the ASD group (44 male, 28 female). 

2.2. Procedures 

ASD diagnoses were confirmed according to DSM-5 
criteria informed by use of gold standard diagnostic measures, 
including the Autism Diagnostic Observation Schedule-2nd 
Edition (ADOS-2) and the Autism Diagnostic Interview-
Revised (ADI-R) [23].  Participants were administered the APT 
as part of a neuropsychological research battery for ongoing 
studies of speech and voice in autism via a multimodal dialog 
platform [34], [35] wherein a virtual agent engages participants 
in a sequence of affect production subtasks as described below.   
2.2.1 Affect Production Task 
 The APT interactive session asks the participants to produce 
one of four emotions (i.e., happy, sad, angry, afraid) through 
each of the subtasks described below. The session begins with 
a speaker test, background noise check and a microphone test. 
The participant is asked to ensure that their face is fully visible 
with no face coverings or shadows obscuring their face. The 
virtual dialogue agent then welcomes the participant to the 
session and prompts neutral facial and vocal expression 3 times 
to establish a baseline. There is an option for participants to 
repeat any incorrect trial (e.g., not ready, unusable response). 
 Affect production is assessed in 3 task conditions. The first 
is the Noncontextual Monosyllabic Condition in which the 
participant is asked to say the word “oh” in a way that 
communicates the specified emotion (i.e., happy, sad, angry, 
afraid) by the way their face looks and their voice sounds. The 
purpose of this task is to assess the ability of the participant to 
produce a monosyllabic utterance that conveys a specified 

 
 
1 The sentence "I'll be right back" was selected for its emotionally neutral 
semantic context in an effort to parallel the stimulus used in a standardized 
facial and vocal affect recognition task, the Diagnostic Analysis of 
Nonverbal Accuracy-2 (DANVA-2)[24]. The DANVA-2 vocal affect 

emotion. The monosyllabic utterance is used to minimize 
expressive language/speech demands. In the Contextual 
Monosyllabic Condition, the participant listens to a brief 
illustrated emotional narrative before being asked to say the 
word “oh” in a way that communicates the specified emotion 
by the way their face looks and their voice sounds. The purpose 
of this task condition is to provide context to help those who 
may not understand the concept of named emotions in isolation. 
Finally, in the Noncontextual Sentence Length Condition, the 
participant is asked to say the emotionally neutral sentence “I’ll 
be right back” 1  in a way that communicates the specified 
emotion by the way their face looks and their voice sounds.  
2.2.2 Computation of Facial and Vocal Metrics 

MediaPipe Face Detection based on BlazeFace [25] is used 
to determine frame-wise x and y coordinates of the face. Facial 
landmarks are then generated by the Google MediaPipe Face 
Mesh algorithm [26], 14 of which are key landmarks in the 
computation of facial movements (Figure 1). All facial metrics 
derived from these landmarks are measured in pixels and then 
normalized by dividing them by the inter-caruncular distance 
(i.e., the distance between the right eye left corner and the left 
eye right corner; shown in red in Figure 1) to account for cross-
participant positional variability relative to the camera [27]. 
Individual variability in inter-caruncular distance has not been 
found to impact data analysis in our pilot sample, as outlier 
analysis has only identified outliers for individual responses 
(mainly due to noncompliance, distraction, etc.); no outliers 
were identified on the participant level. Facial metrics are 
defined in Table 1. Speech data were collected at a sampling 
rate of 48kHz. Praat [28] was used to extract spectral metrics, 
energy metrics, and duration metrics (Table 2). 

Figure 1: 14 landmarks used to 
compute facial metrics.  

RELC = right eye left corner; 
LERC = left eye right corner; RB, 

LB = right/left brow; UREC, 
ULEC = upper right/left eye center; 
LREC, LLEC = lower right/left eye 
center; NT = nose tip; UL = upper 
lip; LL = lower lip; RMC, LMC = 
right/left mouth corner; JC = jaw 

center 
 
2.2.3 Human ratings of affect production ability 

Two human raters classified each participant’s responses as 
happy, sad, angry, afraid, or neutral, blinded to the prompted 
emotion for each response. Facial and vocal responses were 
classified separately, so that raters only had access to one 
modality (face or voice) when performing ratings. Human raters 
had intact affect recognition abilities, determined by scoring in 
the average range or higher on the Diagnostic Analysis of 
Nonverbal Accuracy-2 (DANVA-2)[24], a standardized, norm-
referenced facial and vocal affect recognition task. While only 
four emotions were prompted (happy, sad, angry, afraid), raters 
had a five-response choice option (inclusion of “neutral”) to 
allow them to identify flat affect/failure to convey any emotion. 
Raters were not instructed on how to classify affect via use of a 
facial affect coding system or any other operationalized set of 

stimuli use the phrase "I'm going out of the room right now, but I'll be back 
later." We chose a simpler sentence for greater accessibility to those who 
speak in less complex sentences. 
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imposed criteria developed based upon other task demands. 
Instead, we aimed to classify affective expression based on the 
subjective impression of the rater in order to most closely 
approximate the experience of one’s affect being interpreted in 
daily life. The agreement between the human rater’s 
classification of affect and the emotion that was prompted was 
used as an index of affect production ability, as this measures 
the degree to which the participant was able to effectively 
communicate the intended emotion via facial/vocal expression. 
Each human rater’s percent accuracy for all responses in each 
condition was calculated and averaged separately for facial and 
vocal affect. The averages were then averaged across raters to 
derive affect production ability scores for each participant. 

Table 1. Glossary of the 12 objective facial metrics 
Metric  Construct 
Lip aperture Average lip opening 
Lip width Average lip width 
Mouth surface area (MSA) Average total MSA 
MSA mean symmetry ratio  Symmetry of the mouth 
Velocity, acceleration & jerk 
of lower lip & jaw center  

Speed & rates of change in 
speed & acceleration 

Eye opening Average opening of eyes 
Vertical displacement of the 
eyebrows (VDE) 

Average vertical eyebrow 
displacement  

 
Table 2. Glossary of the 17 objective vocal metrics 

Metric  Construct 
Shimmer [%] Perturbation of the amplitude domain  
Signal-to-noise 
ratio [dB] 

Ratio of signal power to noise power  

Intensity [dB] Energy of a sound over an area 
Articulation 
intensity [dB] 

Intensity of speech in an utterance 

Fundamental 
frequency [Hz] 

Vocal pitch, with typical ranges of values 
for different sexes and ages 

Jitter [%] Frequency variation from cycle to cycle 
Formant 
frequencies [Hz] 
(F1, F2, F3)  

Distinctive frequency components of 
acoustic signal produced by speech; 
characterizes vowel quality 

F2 slope [Hz/s] Rate of vocal tract shape change for vowels 
Speaking 
duration [s] 

Total duration of the utterance 

Pause time [%] % of time utterance is paused 
Articulation 
duration [s] 

Amount of voiced time  

Timepoint [s] of 
max & min F0  

Latency of maximum and minimum pitch 
across the utterance 

Cepstral peak 
prominence [dB] 

Robust measure of voice quality; lower 
values indicate greater levels of dysphonia 

Harmonics-to-
noise ratio [dB] 

Perceived hoarseness, breathiness or 
roughness (lower = more hoarse) 

2.3. Analysis of validity  

2.3.1 Criterion-related validity 
 Criterion-related validity was assessed via the prediction of 
facial and vocal affect production ability from the objective 
facial and vocal metrics, respectively. The combined participant 
sample was used for these analyses in order to capture a range 
of impaired and intact affect production abilities to be compared 
against objective metrics. Stepwise linear regression analyses 
were performed for each task condition to examine the 
prediction of affect production ability from the objective 

automated metrics. All analyses were performed separately for 
facial and vocal affect production. Participants were excluded 
from these analyses if missing data exceeded 20% for objective 
metrics (e.g., missing data for entire task conditions). For those 
included, missing values were imputed with mean replacement. 
2.3.2 Ecological validity 
 Ecological validity was assessed via nonparametric 
correlation analyses between affect production ability and 
clinician rating of ASD symptom severity on the Childhood 
Autism Rating Scale-2nd Edition (CARS-2) [29], as well as 
parent report of facial and vocal expression on the ADI-R [30]. 
These analyses were performed with the ASD group only as the 
TDC group was not evaluated on these autism diagnostic tools. 
2.3.3 Discriminant validity 
 Discriminant validity was assessed via hierarchical linear 
regression analyses to quantify the relative contribution of 
objective metrics to the prediction of human rated affect 
production ability after controlling for performance on 
measures of facial and vocal sensorimotor control and affect 
recognition. Sensorimotor control of face and voice was 
assessed via rater accuracy for imitated facial expressions (i.e., 
if a rater identified an expression as happy, and the participant 
was imitating the actor’s portrayal of happy, this indicates 
adequate sensorimotor imitation). Facial and vocal affect 
recognition were indexed by averaging the age-scaled scores 
for adult and child conditions of the DANVA-2 faces and 
paralanguage subtests, respectively [24]. Associations also 
were examined between affect production ability and nonsocial 
ASD characteristics as rated by parents on the RBS-R [31], [32] 
using the five-factor scoring [33]. Analyses were performed 
separately for face and voice for all analyses. Discriminant 
validity analyses were performed on the ASD sample to avoid 
inflation of measures of association due to group effects. 

2.4. Psychometric properties across sex, age, and 
race/ethnicity, and task demands 

 Analyses for validity measures were performed controlling 
for age and separately for participants assigned male versus 
female sex at birth and for participants in different racial/ethnic 
groups to evaluate whether APT performance was invariant to 
age, sex, and race/ethnicity.  Repeated measures ANOVA was 
performed across all participants to examine within-subject 
effects of task condition to determine if different task demands 
resulted in different affect production ability scores within-
individual or interacted with group membership. 

3. Results 

3.1. Criterion validity 

Objective automated facial and vocal metrics significantly 
predicted affect production ability. Specifically, stepwise linear 
regression analyses indicated that facial metrics predicted 60% 
of the variance in rater accuracy for both noncontextual 
production tasks, and 32% of the variance for the contextual 
production task. Objective vocal metrics predicted 41% of the 
variance in rater accuracy for the noncontextual monosyllabic 
production task, and 58% of the variance for the noncontextual 
sentence-length task and the contextual production task.  

3.2. Ecological validity 

Correlation analyses indicate that clinician ratings of higher 
overall ASD symptom severity on the CARS-2 was 



significantly associated with lower affect production ability, 
quantified by accuracy of human rater classifications for facial 
(r=-.391, p=.013, N=40) and vocal production (r=-.434, p=.007, 
N=38). Scatterplots also show correspondence between APT 
performance and parent ratings of facial and vocal expression 
on the ADI-R. The distribution of ratings shows a trend toward 
lower rater accuracy corresponding to higher (more severe) 
ADI-R rating (Figure 2).  

        
Figure 2: Scatterplots of Affect Production Ability and Parent 

Report of Facial and Vocal Expression 

3.3. Discriminant validity 

The linear combination of raw APT metrics contributed 
additional, statistically significant proportions of the variance 
in human rater accuracy for all production tasks, after 
controlling for affect recognition and sensorimotor control. 
Specifically, APT metrics contributed an additional 33% 
variance for facial monosyllabic production, 27% for facial 
sentence-length, 42% for facial contextual monosyllabic, 57% 
for vocal monosyllabic production, 72% for vocal sentence-
length, 30% for vocal contextual monosyllabic. Correlation 
coefficients were low across all RBS-R scales and facial and 
vocal affect production ability scores (£ .203).  

3.4. Psychometric properties across sex, age, and 
race/ethnicity, and task demands 

Associations between CARS-2 scores and affect production 
ability for facial (-.438, p=.005) and vocal affect (r=-.593, 
p<.001) remained strong after controlling for age. With regard 
to effects of sex, associations between CARS-2 and APT facial 
and vocal affect production were run separately for participants 
assigned male versus female sex at birth. These associations 
remained strong in the split sample, with r=-.436 (facial affect; 
N=22) and r=-.394 (vocal affect; N=21) for male participants. 
Likewise, for females, r=-.313 for facial affect (N=18) and r=-
.485 for vocal affect (N=17). ANOVA results indicate that 
neither facial nor vocal affect production differed significantly 
between racial or ethnic groups. Analyses were not sufficiently 
powered to examine interaction effects of diagnostic group on 
differential impact of race or ethnicity on task performance. 
Finally, repeated measures ANOVA indicated that, for facial 
affect production, there were no significant interaction effects 
of group and task condition; however, the ASD group 
performed significantly more poorly than the TDC group 
across all conditions. For vocal affect production, there was a 
significant effect of task (F(2,88)=4.184, p=.018), but the 
interaction between group and task was not statistically 
significant. Post hoc contrasts indicated that the TDC group 
performed significantly better for the Contextual Monosyllabic 
Condition relative to their performance in the other conditions.  

4. Discussion and Conclusions 
This study assessed psychometric properties of the APT, a 
novel automated measure of affect production. Building on 
prior work demonstrating predictive validity of the APT 
automated metrics in classifying ASD versus TDC groups [22], 
this study investigated the criterion, ecological, and 
discriminant validity of the APT, as well as the effects of age, 
sex, race, ethnicity and task demands on psychometric 
performance. Investigation of criterion validity revealed that 
the automated facial and vocal metrics captured during the APT 
predicted the effectiveness of the participant’s affect production 
(i.e., how well the intended emotion was communicated to 
human raters). This successful prediction was demonstrated in 
the absence of any weighting or other optimization of metrics, 
suggesting that machine learning can be applied to develop an 
APT affect recognition algorithm from a large sample of APT 
data. This would allow for automation of human ratings, which 
would save time and allow for standardization and collection of 
normative data on APT performance. 

Assessment of ecological and discriminant validity 
indicated that APT performance was significantly associated 
with severity of overall ASD symptoms on the CARS-2, but 
was not associated with nonsocial ASD symptoms measured on 
the RBS-R. Further, scatterplots of APT performance and 
parent reported facial and vocal expression on the ADI-R 
indicated that when parents rated these as more abnormal, affect 
production ability scores were lowest. Further, objective 
metrics successfully predicted affect production ability even 
after controlling for sensorimotor control of face and voice and 
affect recognition abilities. Taken together, these findings 
suggest that the APT captures skills in affective communication 
above and beyond what can be attributed to basic sensorimotor 
control or emotional understanding more broadly. 

Finally, evidence of ecological validity was preserved after 
covarying age and across sexes. Affect production abilities did 
not differ across racial and ethnic groups. Likewise, for facial 
affect production, the TDC group outperformed the ASD group 
across all task conditions, but group differences did not 
significantly differ across tasks. In contrast, for vocal affect 
production there was a significant effect of task on 
performance; however, this was driven mainly by the TDC 
group showing an advantage on the contextual as opposed to 
noncontextual tasks, whereas the ASD group did not show the 
same benefit from provision of narrative context in producing 
affective expressions. These findings suggest that ability to 
incorporate situational context into affect production may 
explain some of the difficulty in nonverbal communication that 
is a defining feature of autism. Notably, sample size and 
inability to include TDC participants in analyses involving 
ASD diagnostic measures limit the extent of the analyses we 
were able to perform. Future research in large sample of 
individuals with and without ASD a broader age range are 
necessary to establish validity and reliability of the APT.  

In summary, preliminary evaluation of the psychometric 
properties suggests that the standardized task structure of the 
APT is effective in capturing affect production abilities in 
children and adolescents across age, sex, race, ethnicity, and 
task demands. This suggests that the APT is accessible to 
individuals of different demographic and verbal abilities. 
Further, unweighted automated metrics of facial and vocal 
features successfully predicted affect production abilities, 
suggesting potential for further automation and standardization 
of the APT. 
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