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Abstract
Speech biomarkers have shown promise for the remote assess-
ment of ALS. However, to demonstrate clinical utility at track-
ing longitudinal progress of the disease, one needs to under-
stand how well these biomarkers capture changes that are ‘clin-
ically meaningful’, a concept that is not always clearly defined.
Therefore, this paper defines and explores multiple methods of
computing minimal clinically important difference (MCID) us-
ing ratings of speech impairment severity and listener effort as
clinical anchors. We analyze how these methods impact the es-
timated responsiveness of various metrics collected from 125
ALS patients via a multimodal dialog based remote assessment
platform. We find that select biomarkers are more responsive
than the clinical standard ALSFRS-R across the board at track-
ing clinically meaningful changes related to speech severity. We
further discuss advantages and disadvantages of different MCID
computation methods for assessing ALS disease progression.
Index Terms: speech biomarkers, multimodal, dialog, ALS,
remote assessment, minimal clinically important difference,
speech impairment, listener effort

1. Introduction
Speech-based digital biomarkers have shown excellent poten-
tial for assessment of neurological conditions like Amyotrophic
Lateral Sclerosis, or ALS [1, 2, 3, 4]. However, before these
can be operationally deployed in the real world for remote pa-
tient monitoring in clinical care or as endpoints in clinical trials,
one needs to demonstrate clinical utility of these biomarkers at
tracking longitudinal progress of a disease like ALS. And in or-
der to do that, one needs to understand how well these biomark-
ers capture changes that are ‘clinically meaningful’.

The concept of minimal clinically important difference
(MCID) is an attempt to capture change in a biomarker that
is clinically meaningful. It quantifies the minimal change in
a clinical outcome measure that is considered relevant or im-
portant for patients, caregivers and/or clinicians [5, 6]. It is well
established for measuring improvement after a treatment, often
defined by patient reported outcomes (PRO) such as question-
naire based scales. Here, the MCID is the smallest change that
is considered meaningful and worthwhile by the patient to un-
dergo a particular treatment. In the same manner, MCID can
be utilized to estimate the minimal threshold for deterioration
in symptoms to be considered important for patients, and can
therefore be used to quantify disease progression. To determine
the MCID, two general approaches can be used, anchor-based
and distribution-based methods. To date, there seems to be no
consensus on using one specific method, instead, it is advised to
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use a combination of methods to narrow down a range of MCID
thresholds [6]. While distribution-based methods can be used
without external information based on the outcome measure’s
statistical properties (e.g., by defining the MCID as a fraction
of the standard deviation), they lack the clinical meaningful-
ness. It is generally preferred to use anchor-based methods
that tie changes in the outcome to an external source of clini-
cal relevance, e.g., to a validated questionnaire based scale. For
speech measures in ALS, Stipancic et al. [7] presented such an
approach based on changes in the ALS functional rating scale -
revised (ALSFRS-R), the standard instrument to assess progres-
sion in ALS [8]. Following this approach, Kothare et al. inves-
tigated the responsiveness and sensitivity of speech biomarkers
to track change in ALS [9].

These previous studies have relied on the ALSFRS-R
speech sub score as the external anchor, which limits the gran-
ularity at which meaningful changes can be identified because
speech impairment is rated using only one question on a five-
point scale (ranging from “normal speech processes” to “loss of
useful speech”). Further, only one method to derive an MCID
was explored in these studies, which was based on receiver op-
erating characteristics (ROC) analysis. For a more sensitive ex-
ternal anchor with respect to speech impairment in ALS, we
propose to use a visual analog scale (VAS) to rate listener ef-
fort. This approach has been shown to produce reliable ratings
of impairment severity [10, 11]. Instead of limiting the MCID
estimation to one method, we investigate multiple approaches,
resulting in a range of MCID thresholds rather than a single
value for each speech feature. This paper attempts to answer the
following research questions: (1) using VAS ratings of speech
impairment severity and listener effort as external anchors to es-
timate MCID, how responsive (in terms of the estimated time
it takes to detect meaningful change) are multimodal speech
biomarkers computed from a remote ALS monitoring platform,
as compared to the clinical standard ALSFRS-R? (2) what are
the relative advantages and disadvantages of different MCID es-
timation methods and clinical anchors, and what do these mean
for ALS clinical trials and progress monitoring?

2. Data
Audiovisual data from 143 people with ALS, or pALS (70
female; 36 with bulbar onset; mean age ± standard devia-
tion = 60.4±10.2) were recorded between November 2020 and
February 2024 using a web based multimodal dialog platform
[12, 13, 14]. The ongoing data collection was granted exempt
status by an external Institutional Review Board.1 Participants
were recruited by EverythingALS and the Peter Cohen Foun-
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dation2. The speech assessment contained a number of stan-
dard tasks, which have been adapted to the self-guided remote
setting, including among others a diadochokinesis test (DDK),
sentence intelligibility test (SIT), a reading passage (RP; Bam-
boo passage, 99 words), and a picture description (PD) task.
After completing the speech assessment, participants filled out
the ALSFRS-R. The dataset contains 3,350 sessions, the mean
number of sessions per particpant is 23.4 (± 24.4), and the mean
duration between first and last assessment is 12.1 months (±
10.8 months). 18 particpants had only one session and were
excluded from further analysis.

3. Methods
3.1. Feature Extraction
Speech metrics were automatically extracted from the au-
dio recordings using Praat [15] and the Montreal Forced
Aligner [16]. Speech metrics included, among others, funda-
mental frequency (F0), harmonics-to-noise ratio (HNR), cep-
stral peak prominence (CPP), duration and pausing measures,
canonical timing alignment (CTA)3 [17], speaking rate, jitter,
and shimmer. Facial video metrics, such as kinematics of artic-
ulators (jaw, lower lip), surface area of the mouth, and eyebrow
raises were derived from facial landmarks generated with Medi-
aPipe Face Mesh [18]. These metrics were normalised by divid-
ing their values by the inter-caruncular distance [19]. Linguis-
tic metrics were extracted from automatic transcriptions4 of the
picture description task, using the Python package spaCy [20].

To identify representative features from a large set of multi-
collinear features, we used hierarchical clustering on the Spear-
man rank-order correlations [21]. For this feature selection step,
data from 135 healthy controls (71 female; mean age (standard
deviation) = 59.9 (10.3) years) was used. Ward’s method was
used for clustering and feature clusters were visually inspected
from a dendrogram. A distance threshold was chosen manu-
ally to divide clusters that represent sensible feature groupings
in terms of the domain, resulting in 27 clusters. One representa-
tive feature within each cluster was selected by performing ROC
analysis to determine the area under the ROC curve (AUC) for
distinguishing bulbar onset participants from non-bulbar onset
participants. To further filter features, we imposed a minimum
threshold for the ROC-AUC. Features with an AUC≥ 0.65
and with significantly different longitudinal trajectories were
selected for further analysis.

3.2. Listener Effort Ratings
Previous work has shown that perceptual ratings of listener ef-
fort align well with clinician severity ratings of speech impair-
ment [10, 11]. We followed this approach to obtain listener
effort ratings for 369 samples of the Bamboo reading passage.
Using a visual analog scale, three human listeners (two speech
scientists and one computer science student) and one clinically-
trained speech language pathologist (SLP) provided a rating of
how effortful it was to understand each speech sample. The
VAS was presented on screen as a vertical line, 400 pixels
in height, and had the labels “Not at all” and “Very” at the
end points following work by Picou et al. [22] and Stipanic et
al. [11]. Raters were asked, “How effortful was it for you to
understand?”. The position of the slider was converted into an
integer score between 0 (not at all) and 100 (very). To reduce
rating time, only the first 15 seconds were played for every sam-
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3CTA is a measure of word-level alignment between the spoken ut-

terance and a canonical speech production of the same text.
4https://aws.amazon.com/transcribe/

ple. The samples were selected as follows: For each participant,
their first and last assessment plus a third sample that was clos-
est in time to the midpoint of the interval between the first and
last session were selected.5 Inter-rater agreement was assessed
by means of the intra-class correlation coefficient (ICC).

3.3. Minimal Clinically Important Difference
To provide inclusive MCID estimates, we included both
distribution-based and anchor-based methods. Anchor-based
methods should be preferred if a meaningful clinical anchor is
available, and distribution-based methods are useful to provide
supportive evidence for the MCID [23]. The listener effort rat-
ings serve as an external anchor of meaningfulness, assuming
that a certain amount of change in the ratings reflects a relevant
change in speech impairment, which directly affects quality of
life. Because the perceptual ratings are continuous, the minimal
important difference needs to be defined, for example based on
expert judgement or based on statistical characteristics of the
change in ratings from one time point to another.

Here, we defined that a minimal important difference of lis-
tener effort ratings between two assessments lies between the
mean absolute deviation (MAD) of the mean change across all
participants and twice the MAD to find all speech sample pairs
with at least a statistically meaningful minimal change, but also
leave out sample pairs where the magnitude of change is signifi-
cantly higher. MAD was preferred over standard deviation (SD)
because differences in ratings were not normally distributed.
Participants were stratified into two groups: those whose ratings
yielded a change between MAD and 2MAD and those whose
ratings did not change (difference smaller than MAD). The dif-
ference in ratings was calculated between adjacent sessions. To
compare this approach to the ALSFRS-R as external anchor,
we followed [7] and utilized a 1-point decline in the ALSFRS-
R speech score as minimal important difference. Analogously,
participants were split into two groups, those with a 1-point de-
cline and those with no change between sessions.

Having defined these two groups, three methods commonly
found in the MCID literature [6] were used to derive the MCID
estimate: (a) Change difference (CD): MCID = difference be-
tween the mean metric change in the first group and the mean
metric change in the second group, (b) Average change (AC):
MCID = average of the metric change in participants classified
as having experienced change (first group)6, and (c) ROC anal-
ysis: MCID = the threshold on the ROC curve that maximizes
sensitivity and specificity for discriminating the two groups. For
the ROC approach, we identified the point closest to the top left
corner of the ROC curve using the coords function from the
pROC R package [24]. The following distribution-based meth-
ods were used to estimate MCID without external anchor: (d)
the standard error of measurement (SEM) of the change, defined
as SEM = SD

√
1− r, where r is a measure of reliability

(test-retest reliability of the feature in terms of Pearson corre-
lation in our case), and (e) half the standard deviation (0.5SD)
of the mean change. Both measures have been suggested in the
literature [5, 6].

3.4. Longitudinal Analysis

To model longitudinal responsiveness of speech features, we
fitted growth curve models (GCM) following the approach de-
scribed in [25]. GCMs allow us to estimate a smoothed tra-

5Six participants had only two sessions, so the final number of sam-
ples was 119 ∗ 3 + 6 ∗ 2 = 369.

6If the mean change in the second group is 0, CD and AC are equal.



Figure 1: Listener effort ratings across four raters, sorted by
their mean rating, to illustrate the agreement among raters.

jectory of a speech feature over time with random slopes and
intercepts for each participant. For this analysis, the full dataset
was used to provide as many data points for the model fit as
possible. Because site of onset plays an important role in ALS
progression, growth curve modelling was done separately for
pALS with bulbar onset and pALS with non-bulbar onset [9].
The GCM trajectories were then used to calculate responsive-
nessof each metric as the average time in weeks that it takes to
detect change in that metric greater than the MCID.

4. Results
4.1. Listener Effort Ratings
Fig. 1 shows the distribution of VAS ratings for listener effort
across all four raters. It is evident that the SLP ratings differ sig-
nificantly from the judgement of the other three raters. The rea-
sons for this difference were examined by means of a group dis-
cussion among all raters. It turned out that raters 1, 2 and 3 had a
different concept of listener effort in mind; they judged perceiv-
able speech disturbances as being more effortful to understand,
even if this did not translate to increased cognitive load. Instead,
the SLP ratings were solely based on the notion of how much
cognitive and mental effort is required to understand a speech
sample. Indeed, previous work has shown differences in judg-
ments of speech severity and listener effort between SLPs and
other types of listeners [26]. Despite this difference, the trend
of all ratings is similar, as confirmed by an excellent inter-rater
agreement of ICC=0.92 (p < 0.0001, 95%-CI: [0.91, 0.94]). In
fact, the VAS ratings of rater 1, 2 and 3 suggest more gradually
increasing speech impairment severity in the data in terms of
perceivable changes. We therefore decided to use the SLP’s rat-
ings separately as representative of listener effort, and the mean

ρ r N
RP speaking duration 0.79 0.80 354
SIT PPT 0.59 0.60 365
RP CPP 0.51 0.53 363
DDK HNR 0.35 0.41 363
SIT HNR 0.37 0.35 367
RP mean F0 0.17 0.23 364
RP max. lip width 0.15 0.19 361
ALSFRS-R total -0.25 -0.16 270
PD word count -0.63 -0.65 251
ALSFRS-R bulbar -0.78 -0.77 277
ALSFRS-R speech -0.80 -0.79 277
RP CTA -0.74 -0.83 333

Table 1: Correlation (Spearman’s ρ and Pearson’s r; all signifi-
cant at p < 0.01) between the mean severity rating and metrics
as well as ALSFRS-R scores. N : sample size.

of the remaining three raters’ scores as representative of impair-
ment severity, labeled as severity rating for the rest of this paper.

Table 1 shows the correlation between the mean severity
ratings and the selected features and ALSFSR-R scores in terms
of Spearman and Pearson correlation coefficients. Timing-
related metrics, such as duration, percent pause time (PPT), and
canonical timing alignment (CTA) show strong correlation with
dysarthria severity, and voice quality features, such as CPP and
HNR show moderate correlation. The ALSFRS-R speech and
bulbar sub scores are strongly correlated with severity ratings.
However, we observed large overlaps in the 5-point distribution
of the ALSFRS-R speech score with respect to severity ratings.
Speech scores of 2 and 3 appear within a broad and largely over-
lapping range of severity scores, indicating the lack of sensitiv-
ity to track gradual changes. In contrast, metrics such as CTA
showed a stronger linear relationship to dysarthria severity.

4.2. MCID Estimates
When severity ratings and listener effort were used as anchors,
participants were stratified into two groups based on the MAD
of the mean change in ratings. For severity ratings the MAD
was 7.20 and the number of samples (adjacent sessions) was
28 in the change group and 160 in the unchanged group. For
listener effort ratings the MAD was 5.49 for and the number
of samples was 19 and 185, respectively. When taking a 1-
point decline in the ALSFRS-R speech score as external anchor,
the number of samples was 17 in the change group and 122
in the unchanged group. In addition, we calculated the MCID
estimates for the ALSFRS-R speech anchor on the full dataset,
taking adjacent sessions with an interval of at least 14 days to
determine change in outcomes. For this, the number of samples
was 57 in the change group and 1,355 in the unchanged group.7

Table 2 presents all MCID estimates. When we consider
distribution-based methods, a 0.5 standard deviation (0.5SD)
change provides a more conservative estimate (larger MCID)
compared to the SEM for most features, potentially attributable
to the good test-retest reliability values of these features8. No
clear trends were observed regarding the relationship between
distribution-based and anchor-based estimates, which under-
lines that statistical properties alone cannot serve as a reliable
indicator of clinically important change.

Before comparing different choices of external anchors, we
consider the three selected methods of calculating MCID based
on having a change group and an unchanged group. All ROC
analyses yielded consistently low area under the curve (AUC)
values of below 0.7 (and in some cases even below 0.6) for most
constellations, indicating relatively low discriminative ability.
This is likely caused by the highly heterogeneous presentation
of ALS in terms of disease progression. As a result, the ROC-
derived MCIDs should be utilized with caution and put into
context by exploring additional methods. In the present study,
ROC-derived estimates were not considered for further analy-
sis and discussion. With regard to the external anchor of clini-
cal meaningfulness, the analysis revealed no clear trends across
different metrics. Based on the dataset that was rated for sever-
ity and listener effort, the MCID estimates (AC and CD) are
mostly within a small range for a given metric. Exception are
higher absolute valus for CTA based on listener effort, and a
large spread of estimates for word count (PD), which might be
attributed to a large standard deviation in the metric itself.

7For pALS in the change group, only those adjacent sessions were
taken into account where change was observed.

8The SEM equals 0.5SD for reliability r=0.75, and it is smaller for
more reliable measures with r>0.75



Anchor Severity rating Listener effort ALSFRS-R speech ALSFRS-R speech*
Cutpoint MAD<change<2MAD MAD<change<2MAD 1 point decline 1 point decline
Method 0.5SD SEM CD AC ROC CD AC ROC CD AC ROC CD AC ROC

RP CTA 3.16 1.69 −4.06 −4.91 −2.66‡ −5.42 −7.36 −3.85 −2.15 −4.86 −3.67‡ −1.89 −1.99 −1.26†

RP dur. 4.37 2.01 5.75 6.71 3.44‡ 7.22 8.05 1.74 5.62 8.61 7.38‡ 4.25 4.39 1.45‡

RP mean F0 7.88 3.86 0.46 2.43 0.31† 1.44 3.58 −2.81† 4.58 5.50 7.27‡ 1.72 1.84 4.50†

RP CPP 1.40 1.50 −0.66 −0.45 −0.29† 0.85 1.01 1.68‡ 0.92 1.07 2.34‡ 0.05 0.10 0.41†

SIT PPT 1.97 1.89 1.54 1.85 1.75‡ −0.13 0.25 −0.24† 1.77 2.51 0.09† 0.82 0.90 1.21†

SIT HNR 0.93 0.67 0.95 0.91 0.20‡ 0.66 0.83 0.78† 1.33 1.36 0.52‡ −0.22 −0.19 −0.45†

DDK HNR 1.22 1.03 1.53 1.60 0.96‡ 0.95 1.16 0.12‡ 1.07 1.07 0.44† −0.14 −0.08 −0.28†

PD #words 20.78 21.64 −13.06 −8.91 −0.50† −2.40 −2.42 −2.50† −23.40 −19.57 −5.50† −7.73 −7.44 −2.50†

RP max. LW 0.0602 0.0609 0.0062 0.0079 0.0170† 0.0222 0.0267 0.0003† 0.0276 0.0262 0.0292† 0.0211 0.0201 0.0133†

FRS-R speech 0.17 - −0.12 −0.19 −0.50† −0.12 −0.20 0.50† - - - - - -
FRS-R bulbar 0.49 - -0.07 -0.25 -0.50† -0.75 -1.0 -0.50‡ - - - - - -

Table 2: MCID estimates. For anchor-based methods, the sign indicates the direction of change. The distribution-based MCIDs are
positive by definition. SD: standard deviation, CD: change difference, AC: average change, ROC: receiver operating characteristics,
SEM: standard error of measurement, RP: reading passage, PD: picture description, LW: lip width. †ROC-AUC<0.6, ‡ROC-AUC<0.7,
*the three rightmost columns present MCID estimated based on the full dataset, with shorter time intervals between sessions.

On- Slope per week Median Weeks until MCID
set (± standard error) MCID min. median

RP CTA B −0.1978± 0.0394 -3.11 8.5 15.7
(%) NB −0.0733± 0.0177 17.2 42.4
RP dur. B 0.3228± 0.0652 5.68 6.2 17.6
(s) NB 0.0647± 0.0308 22.4 87.8
RP mean B 0.1232± 0.0400 3.00 3.8 24.4
F0 (Hz) NB 0.0635± 0.0164 5.0 47.3
RP CPP B 0.0101± 0.0050 0.89 5.2 87.7
(dB) NB 0.002± 0.0022 26.5 442.9
SIT PPT B 0.0371± 0.0082 1.66 3.5 44.6
(%) NB 0.0041± 0.0036 21.8 403.9
SIT HNR B 0.0179± 0.0055 0.87 10.6 48.6
(dB) NB 0.0025± 0.0025 75.9 347.7
DDK HNR B 0.0248± 0.0064 1.07 3.3 43.3
(dB) NB 0.0033± 0.0028 24.4 325.2
PD #words B −0.1669± 0.0761 -7.59 14.4 45.5

NB 0.0824± 0.0323 6.1 92.1
RP max. B 0.0002± 0.0002 0.02 31.2 121.0
lip width NB −0.0001± 0.0001 3.2 242.0
FRS-R B −0.0096± 0.0033 - 104.2*
speech NB −0.0049± 0.0016 204.1*
FRS-R B −0.0263± 0.0088 - 38.0*
bulbar NB −0.0155± 0.0043 64.5*

Table 3: Responsiveness of metrics as determined by GCMs.
Number of weeks to detect change is based on the mini-
mum/median absolute MCID across methods (except ROC). B:
bulbar, NB: non-bulbar. *Number of weeks for FRS-R subscores
is based on a 1-point change as the smallest measurable unit.

MCID estimates for ALSFRS-R subscores in Table 2 are
fractional, suggesting that a relevant change as measured by per-
ceptual ratings occurs before it can be detected on the ALSFRS-
R. This is because the scale does not allow for reporting frac-
tional changes as designed; 1 point is the minimum possible
change. Thus, the MCIDs are theoretical values and not practi-
cally actionable. When including the full dataset (right section
in Table 2), some MCID estimates are notably smaller (abso-
lute) than based on the smaller subset of the data. This indicates
that the time interval between observations affects the MCID
estimation (at least when using the ALSFRS-R speech anchor).

4.3. Tracking Longitudinal Progression
Table 3 presents the average slopes for all metrics and the
ALSFRS-R sub scores, which were determined by fitting
GCMs, and the time it takes to detect a change greater than
the MCID. For this, we used the minimum and median MCID
values across all methods (excluding ROC-derived thresholds),
in order to report the best-case scenario and more realistic es-
timates. For the bulbar onset cohort, all metrics except max.
lip width show on average a clinically important difference in a

shorter amount of time than the ALSFRS-R speech score. The
same is true for CTA, speaking duration and the mean F0 for the
reading passage, and word count for picture description in the
non-bulbar onset cohort. This suggests that remotely extracted
speech biomarkers are significantly more responsive, and there-
fore more clinically meaningful, than the current clinical stan-
dard ALSFRS-R at tracking speech impairment severity.

5. Discussion
We found that visual analog scale (VAS) ratings of speech im-
pairment severity and listener effort can serve as external an-
chors to estimate MCID of multimodal speech biomarkers com-
puted from a remote ALS monitoring platform. Based on these
perceptual ratings, we showed that theoretical MCID estimates
for the clinical standard ALSFRS-R are lower than the minimal
detectable difference of 1 point, and that select speech biomark-
ers are significantly more responsive (in terms of the estimated
time it takes to detect meaningful change) as compared to the
ALSFRS-R. This is encouraging evidence supporting the use of
remotely-collected speech biomarkers for monitoring ALS pro-
gression. However, we observed a large variation of the MCID
thresholds, depending on the anchor and the method. These
choices have implications for biomarker/endpoint selection in
clinical trials. While we attempted to come up with a good es-
timate of clinically meaningful change by using the median of
several MCID estimates, the question of which MCID estima-
tion method is the best remains an open one for future research.

There are important limitations to note. For instance, the
average change (AC) estimate does not take the unchanged
group into account and is usually larger (absolute values) than
the change difference (CD) [6], which is true in most cases for
the presented features. If the CD is larger than the AC in abso-
lute terms, it indicates a change in the opposite direction in the
unchanged group. We observed this most prominently for PD
word count, where we hypothesize a training effect in certain
cohorts with increasing word count over time. Furthermore,
irrespective of the method used, for PPT, HNR, and CPP, we
observed changes in sign for some MCID thresholds depending
on the anchor or dataset. One possible explanation is that in all
these cases the MCID estimates are so close to zero that they
in fact do not indicate true change, which in turn suggests that
the two groups do not exhibit significant change relevant to the
used anchors in these metrics (on average). Further research on
large, diverse datasets is required to address these limitations.
To conclude, we provided a range of MCID estimates for a set
of speech features relevant for ALS and reported different sce-
narios for the time it needs to detect meaningful change.



6. Acknowledgements
This work was funded by the National Institutes of Health grant
R42DC019877. We thank the participants of this study for their
time and EverythingALS, and the Peter Cohen Foundation for
participant recruitment.

7. References
[1] D. M. Low, K. H. Bentley, and S. S. Ghosh, “Automated assess-

ment of psychiatric disorders using speech: A systematic review,”
Laryngoscope investigative otolaryngology, vol. 5, no. 1, pp. 96–
116, 2020.

[2] G. Fagherazzi, A. Fischer, M. Ismael, and V. Despotovic, “Voice
for health: the use of vocal biomarkers from research to clinical
practice,” Digital biomarkers, vol. 5, no. 1, pp. 78–88, 2021.

[3] H. P. Rowe, S. Shellikeri, Y. Yunusova, K. V. Chenausky, and
J. R. Green, “Quantifying articulatory impairments in neurode-
generative motor diseases: A scoping review and meta-analysis of
interpretable acoustic features,” International Journal of Speech-
Language Pathology, pp. 1–14, 2022.

[4] V. Ramanarayanan, A. C. Lammert, H. P. Rowe, T. F. Quatieri,
and J. R. Green, “Speech as a biomarker: Opportunities, inter-
pretability, and challenges,” Perspectives of the ASHA Special In-
terest Groups, vol. 7, no. 1, pp. 276–283, 2022.

[5] A. G. Copay, B. R. Subach, S. D. Glassman, D. W. Polly, and
T. C. Schuler, “Understanding the minimum clinically important
difference: a review of concepts and methods,” The Spine Journal,
vol. 7, no. 5, pp. 541–546, 2007. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1529943007000526

[6] Y. Mouelhi, E. Jouve, C. Castelli, and et al., “How is the minimal
clinically important difference established in health-related
quality of life instruments? review of anchors and methods,”
Health Qual Life Outcomes, vol. 18, no. 1, p. 136, 2020. [Online].
Available: https://doi.org/10.1186/s12955-020-01344-w

[7] K. L. Stipancic, Y. Yunusova, J. D. Berry, and J. R. Green, “Min-
imally detectable change and minimal clinically important differ-
ence of a decline in sentence intelligibility and speaking rate for
individuals with amyotrophic lateral sclerosis,” Journal of Speech,
Language, and Hearing Research, vol. 61, no. 11, pp. 2757–2771,
2018.

[8] J. M. Cedarbaum, N. Stambler, E. Malta, C. Fuller, D. Hilt,
B. Thurmond, and A. Nakanishi, “The ALSFRS-R: a revised ALS
functional rating scale that incorporates assessments of respira-
tory function,” Journal of Neurology Sciences, vol. 169, no. 1-2,
pp. 13–21, 1999.

[9] H. Kothare, M. Neumann, J. Liscombe, J. Green, and V. Rama-
narayanan, “Responsiveness, Sensitivity and Clinical Utility of
Timing-Related Speech Biomarkers for Remote Monitoring of
ALS Disease Progression,” in Proc. INTERSPEECH 2023, 2023,
pp. 2323–2327.

[10] J. E. Sussman and K. Tjaden, “Perceptual Measures of Speech
From Individuals With Parkinson’s Disease and Multiple Sclero-
sis: Intelligibility and Beyond,” Journal of Speech, Language, and
Hearing Research, vol. 55, no. 4, pp. 1208–1219, 2012.

[11] K. L. Stipancic, K. M. Palmer, H. P. Rowe, Y. Yunusova, J. D.
Berry, and J. R. Green, “”you say severe, i say mild”: Toward an
empirical classification of dysarthria severity,” Journal of Speech,
Language, and Hearing Research, vol. 64, no. 12, pp. 4718–4735,
2021.

[12] D. Suendermann-Oeft, A. Robinson, A. Cornish, D. Habberstad,
D. Pautler, D. Schnelle-Walka, F. Haller, J. Liscombe, M. Neu-
mann, M. Merrill et al., “NEMSI: A Multimodal Dialog System
for Screening of Neurological or Mental Conditions,” in Proceed-
ings of the 19th ACM International Conference on Intelligent Vir-
tual Agents, 2019, pp. 245–247.

[13] V. Ramanarayanan, D. Pautler, L. Arbatti, A. Hosamath, M. Neu-
mann, H. Kothare, O. Roesler, J. Liscombe, A. Cornish, D. Hab-
berstad, V. Richter, D. Fox, D. Suendermann-Oeft, and I. Shoul-
son, “When Words Speak Just as Loudly as Actions: Virtual
Agent Based Remote Health Assessment Integrating What Pa-
tients Say with What They Do,” in Proc. Interspeech, 2023, pp.
678–679.

[14] V. Ramanarayanan, “Multimodal technologies for remote assess-
ment of neurological and mental health,” Journal of Speech, Lan-
guage, and Hearing Research, pp. 1–8, 2024.

[15] P. Boersma, “Praat, a system for doing phonetics by computer,”
Glot International, vol. 5, no. 9/10, pp. 341–345, 2001.

[16] M. McAuliffe, M. Socolof, S. Mihuc, M. Wagner, and M. Son-
deregger, “Montreal Forced Aligner: Trainable Text-Speech
Alignment Using Kaldi,” in Proc. Interspeech 2017, 2017, pp.
498–502.

[17] J. Liscombe, M. Neumann, H. Kothare, O. Roesler,
D. Suendermann-Oeft, and V. Ramanarayanan, “On timing
and pronunciation metrics for intelligibility assessment in patho-
logical ALS speech,” in Vol 27: Suppl. (2022): Abstracts 8th
International Conference on Speech Motor Control Groningen,
August 2022, 2022.

[18] Y. Kartynnik, A. Ablavatski, I. Grishchenko, and M. Grundmann,
“Real-time Facial Surface Geometry from Monocular Video on
Mobile GPUs,” CoRR, vol. abs/1907.06724, 2019. [Online].
Available: http://arxiv.org/abs/1907.06724

[19] O. Roesler, H. Kothare, W. Burke, M. Neumann, J. Liscombe,
A. Cornish, D. Habberstad, D. Pautler, D. Suendermann-Oeft,
and V. Ramanarayanan, “Exploring Facial Metric Normalization
For Within- and Between-Subject Comparisons in a Multimodal
Health Monitoring Agent,” in Companion Publication of the
2022 International Conference on Multimodal Interaction, ser.
ICMI ’22 Companion. New York, NY, USA: Association for
Computing Machinery, 2022, p. 160–165. [Online]. Available:
https://doi.org/10.1145/3536220.3558071

[20] M. Honnibal and I. Montani, “spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks
and incremental parsing,” 2017.

[21] D. Ienco and R. Meo, “Exploration and Reduction of the Fea-
ture Space by Hierarchical Clustering,” in Proceedings of the 2008
Siam International Conference on Data Mining. SIAM, 2008,
pp. 577–587.

[22] E. Picou, T. Moore, and T. Ricketts, “The effects of directional
processing on objective and subjective listening effort,” Journal
of Speech Language and Hearing Research, vol. 60, p. 199, 01
2017.

[23] D. Revicki, R. D. Hays, D. Cella, and J. Sloan, “Recommended
methods for determining responsiveness and minimally impor-
tant differences for patient-reported outcomes,” Journal of clinical
epidemiology, vol. 61, no. 2, pp. 102–109, 2008.

[24] X. Robin, N. Turck, A. Hainard, N. Tiberti, F. Lisacek, J.-C.
Sanchez, and M. Müller, “proc: An open-source package for r
and s+ to analyze and compare ROC curves,” BMC Bioinformat-
ics, vol. 12, p. 77, 2011.

[25] G. M. Stegmann, S. Hahn, J. Liss, J. Shefner, S. Rutkove, K. Shel-
ton, C. J. Duncan, and V. Berisha, “Early detection and tracking
of bulbar changes in als via frequent and remote speech analysis,”
NPJ digital medicine, vol. 3, no. 1, pp. 1–5, 2020.

[26] P. Dagenais, C. Watts, L. Turnage, and S. Kennedy, “Intelligi-
bility and acceptability of moderately dysarthric speech by three
types of listeners,” Journal of Medical Speech-Language Pathol-
ogy, vol. 7, no. 2, pp. 91–95, 1999.


	 Introduction
	 Data
	 Methods
	 Feature Extraction
	 Listener Effort Ratings
	 Minimal Clinically Important Difference
	 Longitudinal Analysis

	 Results
	 Listener Effort Ratings
	 MCID Estimates
	 Tracking Longitudinal Progression

	 Discussion
	 Acknowledgements
	 References

