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Abstract

Early assessment of mild cognitive impairment (MCI) has the
potential to expedite interventions and slow disease progress
for people at risk of developing dementia. We investigate the
feasibility of administering remote assessments of speech, oro-
facial and cognitive function to an elderly population with MCI
via a cloud-based conversational remote monitoring platform,
and the utility of automatically extracted multimodal biomark-
ers and self-reported problems in identifying MCI patients.
We analyzed data from 90 MCI patients and 91 controls who
each completed two assessments. 90% of participants reported
excellent engagement and liked their overall user experience.
Furthermore, combining multiple facial, speech and cognitive
markers performed best at distinguishing MCI patients from
controls with an AUC of 0.75 using a support vector machine
classifier. Finally, we found that MCI patients reported sig-
nificantly more problems related to memory, falls, anxiety and
speech than controls.
Index Terms: multimodal dialog system, remote patient moni-
toring, mild cognitive impairment

1. Introduction
Mild cognitive impairment (MCI) describes cognitive decline
that is stronger than the decline expected due to normal aging
for people with a similar age and educational background but
does not count as dementia because it does not significantly
interfere with activities of daily living [1]. About 10-20% of
adults who are at least 65 years old have MCI. Men have a
higher risk than women to develop MCI and the risk increases
with age [2], while people with MCI have a greater risk of
developing dementia than people without MCI, although not
everyone with MCI will develop dementia [3, 4]. Therefore,
identifying people with MCI has the potential to allow for early
pharmaceutical interventions before strong damage to the cen-
tral nervous system has occurred [5]. However, it is non-trivial
to detect MCI even for experts – nearly 50% of MCI patients
are never diagnosed with MCI [6].

Several studies have demonstrated the utility of speech
and video signals for the assessment of MCI in particular, and
dementias and other neurological conditions more broadly
[7, 8, 9, 10, 11]. For example, Vincze et al. [12] extracted
a variety of linguistic features from spontaneous speech
transcripts of 48 MCI patients and 36 healthy controls and

achieved an accuracy of 75% when training a support vector
machine (SVM) for binary classification using leave-one-out
cross-validation (LOOCV) with only the features that showed
a statistically significant different between cohorts. Similar re-
sults were achieved by Asgari et al. [13] who transcribed un-
structured conversations of 14 MCI patients and 27 healthy con-
trols to extract several linguistic features that were provided as
input to a SVM, which achieved an accuracy of 83% and a max-
imum AUC of 0.80. In another study, Fraser et al. [14] col-
lected data from 26 MCI patients and 29 healthy controls for
three tasks and extracted a variety of features, i.e. speech and
language features for a picture description task, eye-tracking
and comprehension features for a silent reading task, and eye-
tracking, comprehension, and speech features for an aloud read-
ing task. Afterwards, they evaluated different ways of combin-
ing the different modalities and used both logistic regression
and SVM classifiers for binary classification experiments using
LOOCV. For both classifiers the maximum AUC was 0.88.

While the classification results in the aforementioned stud-
ies and other similar ones are promising, there are several lim-
itations. First, it is not clear how generalizable the results are
due to the relatively small sample sizes, which is a common
limitation due to the effort and cost of recruiting and assess-
ing participants, because several studies have shown that ac-
curacies reported for studies with small sample sizes are often
overoptimistic [15, 16]. Secondly, many of these studies typi-
cally analyze a single modality, i.e., text or speech, in isolation,
as opposed to combining information from multiple modalities.
Thirdly, many of these studies were either partly or wholly per-
formed in-lab or in-clinic, with data collection technologies not
built for scale. Finally, in addition to objective measures of pa-
tient behavior captured by such conversational remote patient
monitoring technologies, what patients report about their illness
is also of critical importance, but has traditionally been captured
using categorical scales that are rated by clinicians in research
settings. However, recent research has demonstrated the effi-
cacy of analyzing open-ended self-reported responses from pa-
tients to questions about what bothers them about their disease
and how it affects their daily functioning [17].

To address these limitations, we propose a multimodal dia-
log platform for remote assessment of MCI that employs a vir-
tual agent to guide a sample of 181 participants through a num-
ber of tasks while extracting a variety of speech, text, facial and
cognitive features. While there are many telehealth solutions for
remote patient assessment and monitoring, to our knowledge,



this is the first work that integrates both (i) the measurement
of objective biomarkers of MCI from multiple modalities and
(ii) unfiltered patient verbatim replies about their bothersome
problems and functional consequences into one comprehensive
solution at scale. This paper specifically aims to answer the
following research questions:

1. Is it feasible to remote administer assessments of speech and
cognitive function at scale through a multimodal dialog plat-
form for an elderly population with MCI?

2. How informative and reliable are the extracted features at dis-
tinguishing MCI patients from healthy controls? Moreover,
what additional insights do analyses of MCI patients’ most
bothersome problems relative to healthy controls reveal about
the disease?

To this end, we collected 362 remote assessments from 90 peo-
ple with MCI and 91 healthy controls and analyzed both the
self-reported experience of the participants as well as the utility
and reliability of the extracted features.

2. Data
We recruited 200 participants (100 people with MCI and 100
healthy controls) via the U.S. Department of Veterans Affairs1

between November 2023 and January 2024 to complete two as-
sessments (one week apart) administered through the Modality
platform, a HIPAA compliant cloud-based multimodal dialog
platform [18, 19]. To qualify as participants, people needed
to be at least 55 years old, able to consent and e-sign, have
a valid phone number and email, able to read and speak in
English, and have access to a smartphone, tablet, or PC with
internet connection and webcam. Additionally, people were
not allowed to participate, if they had been diagnosed with de-
mentia, had cognitive impairment due to cerebrovascular dis-
ease, head trauma, chronic or active abuse of alcohol, opioid, or
methamphetamines, Parkinson’s disease, schizophrenia, bipolar
disease, or major depressive disorder, or used benzodiazepines,
non-BZD receptor modulator sleeping medications, drugs for
the treatment of Parkinson’s disease such as levodopa, or an-
tipsychotics. Finally, for the MCI cohort participants needed at
least two MCI diagnoses (ICD-102).

During each assessment participants were guided through
23 structured exercises designed to elicit speech, facial, and
cognitive behaviors, including vowel phonations, automatic
speech (counting up from one), read speech (SIT and bam-
boo passage), spontaneous speech (picture description and open
ended questions), cognitive recall (immediate and delayed),
digit span (forward and backward), three step task, and cate-
gorical fluency. Additionally, during the first assessment at the
end of the interactive part, participants were asked by the vir-
tual agent whether they have a problem related to their general
health or personal well being, to describe in their own words
the problem and how it affects their daily functioning, and to
describe what makes the problem better and worse. Participants
were asked to report up to five problems related to their general
health as well as up to five problems related to their personal
well being. Finally, at the beginning of the first assessment par-
ticipants were presented with a demographics survey before the
interactive part of the assessment and at the end of each assess-
ment participants were asked to complete a user experience sur-
vey. The study was approved by the Institutional Review Board
of the University of California, San Francisco.

1https://www.usa.gov/agencies/u-s-department-of-veterans-affairs
2https://www.cdc.gov/nchs/icd/icd10.htm

Table 1: Participant demographics. Age is presented as mean
(standard deviation).

Cohort # Participants Age (years)
MCI 90 (9F / 81M) 71.08 (9.10)

Controls 91 (9F / 82M) 71.30 (8.59)

In the end, 181 participants completed both assessments,
while 19 participants withdrew from the study for a variety of
reasons. Table 1 provides an overview of the demographics of
the 181 participants. While the cohorts have been age-matched,
about 90% of participants were male reflecting the fact that only
about 10% of US veterans are female3. Of the healthy controls,
about 92% identified themselves as white, 5% as black, and 3%
as others, while for MCI patients 80% identified themselves as
white, 16% as black, and 4% as others. The education level
was similar for both cohorts with 44% of the MCI patients and
35% of the controls having an advanced degree, 47% of the
MCI patients and 60% of the controls having an undergraduate
degree, and 9% of the MCI patients 5% of the controls having a
high school degree or GED4.

3. Feature Extraction
The multimodal dialog platform automatically extracts a vari-
ety of speech (e.g. speaking rate), facial (e.g. range and speed
of movement of the lips), and text (e.g. noun rate) features in
near-real-time during interactive assessments. Speech features
are extracted using Praat [20] and Kaldi [21]. Facial features
are computed using facial landmarks extracted with MediaPipe
Face Detection [22] and MediaPipe Face Mesh [23], and nor-
malized through the inter-caruncular distance to reduce the vari-
ability within and across assessments due to camera and head
movement. Text features were computed using SpaCy 3.7.2 5

based on automatic transcriptions obtained through Amazon
Transcribe6. Cognitive features (e.g. number of words recalled)
were manually extracted by human annotators after the data col-
lection. For the word recall tasks, the score is expressed as the
percentage of correct words (ignoring order). For the digit span
tasks, a score of 2 was given if all digits were repeated in the
correct order, a score of 1 if all digits were repeated but in a
different order, and a score of 0 otherwise. Additionally, for all
cognitive tasks, the end of the system’s prompt and the begin-
ning as well as the end of the participant’s response was man-
ually determined and used to compute response latency and re-
sponse duration features.

4. Feasibility Analysis
To evaluate the feasibility of conducting a remote assessment
through a multimodal dialog platform, participants were asked
to rate different aspects of the interaction, like how engaged
they felt during the interaction or how intelligible the virtual
agent was, on a 5-point Likert scale ranging from “very unsat-
isfactory“ to “very satisfactory“ after the interactive part of the
session. Figure 1 shows that the majority of participants rated
the relatibility, understandability, and intelligibility of the sys-
tem’s voice as very high, and 98.9% of the participants indicated
that they were never or only rarely interrupted by the system.
Additionally, most of the participants responded that the overall

3https://www.va.gov/vetdata/veteran population.asp
4https://ged.com/
5https://spacy.io/
6https://aws.amazon.com/transcribe/



Table 2: Overview of the extracted features across modalities.

Domain Features

Sp
ee

ch

Energy shimmer (%), intensity (dB), signal-to-noise ratio (dB)
Timing speaking and articulation duration (sec.), articulation

and speaking rate (WPM), percent pause time (PPT, %),
canonical timing agreement (CTA, %)

Voice quality cepstral peak prominence (CPP, dB), harmonics-to-
noise ratio (HNR, dB)

Frequency mean, max., min. fundamental frequency F0 (Hz), first
three formants F1, F2, F3 (Hz), slope of 2nd formant
(Hz/sec.), jitter (%)

Fa
ci

al

Mouth lip aperture/opening, lip width, mouth surface area,
measurements mean symmetry ratio between left and right half of the

mouth
Movement velocity, acceleration, jerk, and speed of lower lip and

jaw center
Eyes number of eye blinks per sec., eye opening, vertical dis-

placement of eyebrows

Te
xt

Lexico-
semantic

word count, percentage of content words, noun rate,
verb rate, pronoun rate, noun-to-verb ratio, noun-to-
pronoun ratio, closed class word ratio, idea density

Self-reported
problems

reported symptoms, reported problem domains

C
og

ni
tiv

e Scores percentage of correct words (immediate and delayed
word recall), digit span forward/backward score (ranges
from 0 to 2)

Timing response latency (sec.), response duration (sec.)

Figure 1: Bar chart illustrating the results of the UX survey. The
x-axis represents ratings on a Likert scale from 1:Very Unsatis-
factory to 5:Very Satisfactory

system’s performance, their overall experience with the system,
and the delay in response from the system were either satisfac-
tory or very satisfactory. Furthermore, most participants felt ei-
ther engaged or even highly engaged while interacting with the
system. Only when participants were asked how regularly they
would use an app with the virtual guide, only 11.4% selected
the best rating stating that they would use it all the time, while
most participants replied that they would use it often or some-
times, which is not surprising considering that the system was
not intended to be used all the time. Overall the results high-
light that it is feasible to conduct remote assessments through a
multimodal dialog platform for an elderly population with and
without MCI, although it is important to remember that only
people who have an email address and an electronic device with
internet connection and webcam were allowed to participate.

5. Clinical Validation
To determine whether the features extracted from the collected
data are clinically valid, non-parametric Kruskal-Wallis tests
were performed for each individual feature to determine which
of them show a statistically significant difference (α = 0.01)
between cohorts. Additionally, Pearson correlations were com-

Figure 2: Effect sizes and test-retest reliabilities (reported in
parentheses) of speech, facial, and cognitive features that show
statistically significant differences between MCI patients and
healthy controls at α = 0.01. Positive effect sizes indicate that
feature values for patients are greater than for healthy controls.

puted between features of participants’ subsequent sessions to
assess the test-retest reliability of the features. Figure 2 shows
the effect sizes in terms of Glass’ Delta for the 13 resulting fea-
tures together with their test-retest reliability. The figure shows
that facial features show the strongest signal with mostly ac-
ceptable or good reliability. More specifically, features related
to the average mouth surface area and lip aperture are higher
for MCI patients, while features related to the vertical eyebrow
position and eye opening are lower for MCI patients. For pic-
ture description the minimum F0 was lower and for the delayed
word recall task intensity was lower, however, the latter feature
was not reliable. Finally, healthy controls achieved higher de-
layed recall scores than MCI patients, although this feature was
not reliable.

To investigate how well the features can discriminate the
cohorts, several classifiers available in scikit-learn 1.3.2 [24],
i.e. Logistic Regression (LogisticRegression), Random Forest
(RandomForestClassifier), Multilayer Perceptron (MLPClassi-
fier), and Support Vector Machine (SVC), were employed for
binary classification experiments using 5-fold cross-validation.
Since some features had missing values due to incomplete di-
alogs or data transmission errors and most machine learning al-
gorithms cannot handle missing feature values, we applied a
two step process to remove missing values: (1) we removed
features with more than 5% missing values in the data, and
(2) we removed the remaining missing data by taking out af-
fected participant sessions. Afterwards, the following feature
sets were provided as input to all classifiers: (i) speech only,
(ii) facial only, (iii) text only, (iv) cognitive only, (v) all features
combined, and (vi) only features that showed a statistically sig-
nificant difference between cohorts (Figure 2). The best result
was obtained using logistic regression or support vector ma-
chine classifiers for feature set (vi) with a mean AUC of 0.75
(Figure 3).

Table 3 illustrates that the selected feature set had the
strongest influence on the achieved classification performance,
while the influence of the selected classifier was small in com-
parison. When only a single modality was used, text features
led to the the best results with an AUC of 0.62 with logistic
regression and MLP classifiers. Providing all features as input
to the classifiers without feature selection did not improve the
performance, while using only the features that showed a statis-
tically significant difference between cohorts (p < 0.01) led to
the best AUC of 0.75.

To evaluate the utility of asking participants to report in



Figure 3: ROC curves showing the results of binary classifica-
tion with 5-fold cross-validation when using the 13 features that
showed statistically significant differences between controls and
MCI patients (see Fig. 2) as input to a support vector machine.

Table 3: Classification performance as measured by area under
the ROC curve (AUC) across multiple classifiers (LR: Logis-
tic Regression; RF: Random Forests; MLP: Multi-layer Percep-
tron; SVM: Support Vector Machine) and feature sets.

Classifier
LR RF MLP SVM

Fe
at

ur
e

Se
t

speech only 0.52 0.53 0.55 0.53
facial only 0.59 0.58 0.59 0.54
text only 0.62 0.59 0.62 0.61
cognitive only 0.57 0.58 0.55 0.55
combo - all 0.57 0.56 0.61 0.56
combo - significant 0.75 0.73 0.69 0.75

their own words what problems affect their daily functioning,
the description of each problem and the description of how each
problem affects the daily functioning of the participant were au-
tomatically transcribed via Amazon Transcribe. Afterwards, the
transcriptions were provided to an inference model developed
from a neural network with two hidden layers, which was previ-
ously trained on 168,260 self-reported problems collected from
about 25,000 Parkinson’s Disease patients, to identify which of
65 symptoms, such as “cognitive slowing“ or “memory“, were
described by a participant [25]. Additionally, the 65 symptoms
were automatically grouped into 14 domains, such as “cogni-
tion“ or “pain“. Finally, we counted the number of times a spe-
cific problem domain or symptom was reported by each cohort
for both general health and personal well being related problem
reports. Figure 4 shows that MCI patients reported three times
more problems with cognition than healthy controls. They also
reported slightly more gait, psychiatric, and sleep problems.
Figure 5 shows that MCI patients reported nearly 2 times more
problems with anxiety or worry and speech, nearly 4 times more
problems with memory, and 6 times more problems with falls
than healthy controls. These results are not surprising because
anxiety is common in MCI [26] and the number of falls has
been shown to be higher for people with MCI due to impaired
balance, gait, and executive functioning [27] (although this is
still an ongoing area of research [28]).

6. Discussion
The results of the feasibility analysis show that an elderly pop-
ulation with MCI was not only able to interact with the dialog
platform and successfully complete remote assessments, but in
fact the majority of participants felt engaged, liked their expe-
rience, and would be happy to use such an assessment platform

Figure 4: Overview of the domains of the self-reported problems
affecting the daily functioning of participants. Only domains
that showed a difference of more than 5 reports between cohorts
were included.

Figure 5: Overview of the symptoms of the self-reported prob-
lems affecting the daily functioning of participants. Only symp-
toms that showed a difference of more than 5 reports between
cohorts were included.

often or at least sometimes. Additionally, the conducted analyt-
ical validation of the automatically extracted biomarkers shows
that combining multiple facial, speech, and cognitive features
performed best at reliably distinguishing MCI patients from
healthy controls with an AUC of 0.75 using a support vector
machine classifier, which is similar to results reported in other
studies [29, 30, 12]. Finally, the analysis of the symptoms ex-
tracted from the self-reported problems shows the utility of ask-
ing patients to report their most bothersome problems in their
own words.

While the results confirm the feasibility of using remote pa-
tient monitoring technology for MCI patients and the utility of
combining extracted biomarkers and patient self-reports into a
single assessment, there are important caveats and limitations
to consider. First, while the number of overall participants was
higher than in many other studies, only 10% of the participants
were female and the majority of participants was white (rep-
resentative of the US veteran population), raising the question
whether the results are generalizable to more diverse popula-
tions. Second, only persons who had an email account and a de-
vice with internet access and webcam were invited to participate
in the study, introducing a self-selection bias of sorts for veter-
ans who were relatively more tech-savvy than their peers. Fi-
nally, while the current work did not have access to measures of
cognitive impairment degree, such as MoCA or MMSE scores,
future work will investigate the extent to which such multimodal
biomarkers can be used to characterize MCI severity, an impor-
tant step towards demonstrating clinical utility. This includes
research into additional feature sets, feature selection methods
and machine learning models to improve classification perfor-
mance and accurately track longitudinal progression of the dis-
ease, with applications to clinical trials and clinical care.
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