Multimodal dialog based remote patient monitoring of motor function in Parkinson’s Disease and other movement disorders

Oliver Roesler1, William Burke1, Hardik Kothare1, Jackson Liscombe1, Michael Neumann1, Andrew Cornish1, Doug Habberstad1, David Pautler1, David Suerdemann-Oeft1 and Vikram Ramanarayanan1,2

Modality.AI, University of California, San Francisco
Contact: oliver.roesler@modality.ai


Objective: demonstrate the feasibility of novel finger-tapping exercises administered through a multimodal dialog agent for assessment of motor function in Parkinson’s Disease (PD) and other movement disorders.

Methods: analysis of finger tapping measures extracted from a web-based conversational assessment of people with PD (pPD).

Implications: finger tapping measures extracted through a multimodal dialog agent allow to distinguish PD patients and controls.

Introduction

Results and Discussion

Table I. Participant demographics, MoCA scores and years since diagnosis are presented as: median (mean standard deviation)

Group Controls pPD
Sex 11F / 1M 3F / 4M
Age (years) 68.5; 67.31 (5.99) 65.75; 66.02 (14.04)
MoCA score 27; 27.25 (1.6) 27; 26.57 (2.15)
Years since diagnosis n/a 5; 8.56 (7.47)

Figure 1. Modality.AI dialog platform.

Figure 2. Illustration of the 21 obtained and 2 used (shown in red) hand landmarks for the two key points of interest, i.e. (a) fingers open and (b) fingers closed.

Figure 3. Receiver Operating Characteristics (ROC) curve displaying the performance of binary classification with 5-fold cross-validation for all finger tapping metrics (N = 46).

Continuous dialog platform

Figure 4. 18mm

Table II. Overview of the extracted finger tapping metrics.

Metrics Description
Velocity / Acceleration Maximum and difference between first half and second half of each task
Jitter Cycle-to-cycle variation of time period
Shimmer Cycle-to-cycle variation of amplitude

Future Work

Conclusions

Methods and Materials

● 46 sessions were recorded from 7 pPD and 12 controls (Table I) using a cloud-based multimodal dialog platform1 (illustrated in Figure 1).

● The virtual agent engages participants in a conversation consisting of structured conversational exercises designed to elicit speech, facial, and limb motor behaviors.

● Each conversation includes three finger tapping tasks that differ based on the goal of the tap, i.e. participants are told to make the movement as (1) wide, (2) fast, or (3) both wide and fast as possible.

● For all finger tapping tasks participants are instructed to hold either their right or left hand up to the camera and perform a tapping motion for five seconds.

● Anatomical landmarks of the participants’ hands are derived from the recorded video frames (Figure 2).

● The positions of the tips of the thumb and index finger are then used to calculate the metrics in Table II.

Results and Discussion

● A binary classification between pPD and controls was conducted through a 5-fold cross-validation with a random forest classifier.

● The mean Unweighted Average Recall (UAR) was 0.53 ± 0.15 (Figure 3) indicating that the extracted finger metrics can be used to distinguish between pPD and controls.

● In the presented finger tapping exercises administered through a virtual dialog agent can be used for remote monitoring of motor function in PD and other movement disorders.

● Preliminary results suggest that extracted finger tapping metrics can be used to distinguish between pPD and controls.

● To investigate the robustness of the findings, data from more participants will be analyzed in a future study.

● To investigate the robustness of the findings, data from more participants will be analyzed in a future study.

● Information about participants’ handedness was not available for this analysis, thus, it will be taken into consideration in future studies to better understand finger tapping behavior in pPD.