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Purpose: Automated remote assessment and monitoring of patients’ neurologi-
cal and mental health is increasingly becoming an essential component of the
digital clinic and telehealth ecosystem, especially after the COVID-19 pandemic.
This review article reviews various modalities of health information that are use-
ful for developing such remote clinical assessments in the real world at scale.
Approach: We first present an overview of the various modalities of health
information—speech acoustics, natural language, conversational dynamics, oro-
facial or full body movement, eye gaze, respiration, cardiopulmonary, and neural
—which can each be extracted from various signal sources—audio, video, text,
or sensors. We further motivate their clinical utility with examples of how infor-
mation from each modality can help us characterize how different disorders
affect different aspects of patients’ spoken communication. We then elucidate
the advantages of combining one or more of these modalities toward a more
holistic, informative, and robust assessment.
Findings: We find that combining multiple modalities of health information
allows for improved scientific interpretability, improved performance on down-
stream health applications such as early detection and progress monitoring,
improved technological robustness, and improved user experience. We illustrate
how these principles can be leveraged for remote clinical assessment at scale
using a real-world case study of the Modality assessment platform.
Conclusion: This review article motivates the combination of human-centric
information from multiple modalities to measure various aspects of patients’
health, arguing that remote clinical assessment that integrates this complemen-
tary information can be more effective and lead to better clinical outcomes than
using any one data stream in isolation.
Telehealth, or the ability to assess and monitor vari-
ous aspects of patients’ health remotely, and often from
the comfort of their own home using their own telecom-
munication devices, is increasing in demand, particularly
in today’s post-pandemic world.1 This includes live health
assessments that can be conducted by clinicians over video
and audio in patients’ homes, as well as automated remote
assessments that can be conducted asynchronously using
mobile technology and smart devices and do not require
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manual intervention. The U.S. Department of Health and
Human Services has taken a range of administrative and
policy steps to expedite the adoption and awareness of
telehealth.2 This is because telehealth, and specifically
automated remote patient assessment and monitoring,
have the potential to alleviate, if not fully address, several
challenges associated with the majority of clinical assess-
ment practice today (see, e.g., Steinhubl et al., 2013). For
instance, a typical patient today must (a) come into the
clinic to be assessed, which might be a problem for
patients with ambulatory difficulties, (b) at specified times,
depending on the availability of their chosen medical
1https://nibib.nih.gov/science-education/science-topics/telehealth.
2https://telehealth.hhs.gov/providers/telehealth-policy.
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4We use the term sensor to broadly refer to any device that detects
and responds to an input stimulus, such as heat, light, sound, pres-
service provider (which, for certain neurological condi-
tions, can be as far apart as several months, during which
time their disease might have progressed significantly).
Furthermore, (c) the conduct and interpretation of these
assessments can be biased (Gopal et al., 2021) and specific
to the clinician involved (particularly for mental health
assessments), and therefore not consistently reproducible
and scalable. Finally, (d) today’s in-clinic assessments can
be time-consuming and expensive depending on the specific
procedures and personnel involved. Automated remote
patient assessments in particular effectively addresses each
of these pain points because: (a) as the name suggests, they
can be done remotely, from the comfort of people’s homes,
using widely available consumer-grade electronic devices
such as laptops, smart watches, and mobile phones; (b)
they can be performed more frequently than in-clinic assess-
ments, with asynchronous and immediate reporting to clini-
cal service providers; (c) they can be performed in an objec-
tive, prespecified manner, reducing bias, and enabling scal-
ability; and finally, (d) they can be made available to
patients at relatively lower cost as compared to in-clinic
assessments (see Dorsey & Topol, 2016). The rest of this
review article will therefore focus on automated remote
patients telehealth assessments, as opposed to those con-
ducted by a live clinician.

At this point, let us define some important terms.
Artificial intelligence (AI) refers to the broad field of com-
puter systems capable of performing complex tasks that
historically only a human could do, such as analyzing
data, reasoning, making decisions, or solving problems.
Machine learning (ML) is a subset of AI focused on the
development of computer systems that learn and adapt
automatically from experience and data, without being
explicitly programmed.3

The recent rapid advances in digital computing,
storage and AI technologies have allowed us to measure
multiple human-centric signal modalities for the purposes
of remote patient assessment (Abernethy et al., 2022). One
or more of these modalities—including, but not limited to,
speech acoustics, natural language, conversational ability,
orofacial movement, limb or body movement, eye gaze,
respiration, cardiac signals, or even neural signals—can be
impacted in multiple diseases ranging from a simple cold to
a neurological disorder (Milling et al., 2022; Ramanarayanan
et al., 2022). Furthermore, applying AI techniques in con-
junction with multimodal sensing technology has been
shown to improve disease detection and diagnosis in
mental health conditions (Garcia-Ceja et al., 2018; Shatte
et al., 2019; Thieme et al., 2020). This review article
argues that integrating multiple modalities into a single
�

3https://cloud.google.com/learn/artificial-intelligence-vs-machine-learning.
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platform for the purpose of remote clinical assessment
can be more effective and lead to better clinical outcomes
than using any of these data streams in isolation. Such
multimodal technologies are well-suited to assess commu-
nication disorders in particular, because they can capture
changes in speech and voice (e.g., slowing of speech rate
or decreased loudness), as well as changes in orofacial or
full body movement (e.g., reduced lip or jaw speed, facial
asymmetry, or impaired gait), which affect communication
and movement and may be among the earliest signs of
neurologic diseases such as amyotrophic lateral sclerosis
(ALS; Neumann et al., 2021), stroke (Liu et al., 2023),
Parkinson’s disease (PD; Kothare et al., 2022), traumatic
brain injury (TBI; Talkar et al., 2020), or mild cognitive
impairment (MCI; Roesler et al., in press). In addition,
with repeated administrations over time, multimodal ana-
lytics can be used to objectively monitor the rate of dis-
ease progression (Kothare, Neumann, et al., 2023).

The rest of this review article reviews the current sig-
nal sources and health information modalities available
and motivates the combination of multiple sources for a
more holistic assessment of patient health. We focus on
multimodal technologies (and in turn clinical assessments)
for remote assessment and monitoring that impact com-
munication and movement, both crucial to patients’ daily
living and personal well-being.
Approach

Overview of Health Information Modalities

We draw a distinction at this point between modali-
ties of data collection and modalities of health informa-
tion. By the former, we refer to signal sources, such as
audio, video, text, and sensors.4 By the latter, we mean
information such as speech acoustics, natural language,
conversational ability, orofacial movement, limb/body
movement, eye gaze, respiration, gait, body posture, car-
diac signals, or even neural signals that we can measure
from those signal sources. In this review article, we will
use the term modality to refer to the latter and refer to the
former simply as signal sources. We further use the term
feature to denote an individual property or characteristic
of a phenomenon, usually numeric or categorical, which is
measurable from a signal source (Bishop, 2006). Figure 1
provides a schematic illustration of these ideas, where
sure, magnetism, or a particular motion, from the physical environ-
ment and transmits a resulting output measurement. This includes
peripheral computing devices like touchscreens or tablets that can be
used to record tactile input.
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Figure 1. Schematic illustrating the distinction between signal sources and modalities of health information relevant for remote health
assessment and monitoring, alongside the benefits obtained by combining information from multiple modalities. All signal sources can be
used for both active and passive measurement. Note that while sensors and wearables can theoretically measure a large number of health
modalities, different sensor signal sources (or the same sensors positioned differently) are typically required to measure different health infor-
mation modalities. EEG = electroencephalography.
multiple modalities can be derived from a signal source.
For example, we can extract information from multiple
modalities—speech, text, conversational, and even
respiratory—from an audio signal source depending on the
specific recording protocol used. Note that each of these
modalities can, in turn, carry information about abnormali-
ties in one or more health domains—motoric, cognitive, lin-
guistic, affective, or anatomical (see Ramanarayanan et al.,
2022, for an illustration of this concept in speech). Finally,
we use the term biomarker to denote objective indications
(i.e., substance, structure, or process) that can be accurately
and reproducibly measured from inside or outside the
patient (Strimbu & Tavel, 2010).

Here, we focus on signal sources relevant to remote
health assessment and monitoring. This means other
potentially useful multimodal data sources, such as medi-
cal imaging scans, blood biomarkers, genomics/proteomics
, electronic health records (EHRs), and so forth, which
are typically collected in-clinic and relatively infrequently,
are out of scope for the purposes of this review article.
Additionally, we focus on text, audio, and video signal
sources in more depth, given the particular relevance of
modalities extracted therefrom to the assessment of com-
munication disorders. For reviews of remote health moni-
toring based on noninvasive and wearable sensors, see
Kim et al. (2019), Majumder et al. (2017), and Vegesna
et al. (2017). While text, audio, and video data and some
sensor data are easy and affordable to collect, thanks to
the ubiquity of cellphones, tablets, laptops, smart watches,
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and other such devices, modalities collected via other sen-
sors (such as spirometers, ambient monitoring sensors, or
portable electroencephalography [EEG] devices) are less
accessible and more expensive. All these signal sources—
audio, video, text, or sensors—can be used to collect in
active mode (where data are recorded at prespecified
assessment times) or passive mode (where data recording
is always on). While passive monitoring allows one to
track patient activity continuously on an intra- and inter-
day basis, it also brings with it the challenges of analyzing
large amounts of data to extract sparse signals of interest
along with significant privacy considerations (patients
need to consent to being tracked anywhere anytime
depending on the specific signal sources and data collec-
tion protocol under consideration).

Speech
The clinical utility of speech-based digital biomark-

ers computed from multiple modalities as windows into
mental and neurological health has been increasingly
recognized in the signal processing and computer science
literature (Cummins et al., 2018; Low et al., 2020;
Ramanarayanan et al., 2023; Robin et al., 2020). An
important clinical use case of speech analytics is in the
movement disorder space. During the oral motor exam,
which is a standard component of the neurological exam,
speech is analyzed to help confirm the presence of move-
ment disorders related to regional lesions to one or several
components of the motor system. These lesions and their
movement disorder consequences have also been causally
Ramanarayanan: Multimodal Remote Health Assessment 3

erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



linked to different types of dysarthria (i.e., spastic, flaccid,
ataxic, hypokinetic, hyperkinetic, and mixed) or apraxia of
speech (Ramanarayanan et al., 2022), depending on the
specific disorder in question. Therefore, it should come as
no surprise that speech biomarkers have demonstrated util-
ity for (a) detection of such disorders (including early
detection, during prodromal phases; Hlavnička et al., 2017;
Neumann et al., 2021), (b) subgrouping or patient stratifi-
cation (Daoudi et al., 2022), (c) longitudinal progression
tracking (Kothare, Neumann, et al., 2023; Stegmann et al.,
2020), and even (d) predicting treatment response in a drug
trial (Green et al., 2018; Norel et al., 2020). Indeed, the fea-
sibility of speech-based disease detection or severity predic-
tion has already been demonstrated for a wide spectrum of
medical conditions ranging from acute or chronic respira-
tory diseases, such as cold and flu (Warule et al., 2023),
COVID-19 (Deshpande et al., 2022; Quatieri et al., 2020),
or asthma (Balamurali et al., 2020); to psychiatric disor-
ders, such as schizophrenia (Rapcan et al., 2010; Richter
et al., 2022) or depression (Cohen et al., 2023; Williamson
et al., 2019); to developmental disorders, such as autism
spectrum disorder (Kothare et al., 2021; Mohanta &
Mittal, 2022); and neurodegenerative diseases, such as ALS
(Green et al., 2018; Neumann et al., 2021), Alzheimer’s dis-
ease (AD; König et al., 2015; Meilan et al., 2018), PD
(Hlavnička et al., 2017; Kothare et al., 2022; Narendra
et al., 2021), Huntington’s disease (HD; Chan et al., 2019),
or multiple sclerosis (MS; Rusz et al., 2018). Furthermore,
recent research has found encouraging evidence for speech
signal analysis as a viable alternative to spirometry (or the
measurement of lung function, specifically the amount
and/or speed of air that can be inhaled and exhaled, using
a custom device and sensors) for remote assessment
(Vatanparvar et al., 2021) of respiratory function, relevant
in conditions such as asthma (Kutor et al., 2019) and
ALS (Stegmann et al., 2021). Features of interest com-
puted from the speech signal range from basic, easily
interpretable properties of the signal usually captured on a
short-term basis through low-level descriptors (LLDs),
such as the fundamental frequency (F0), formants, jitter,
shimmer, speaking rate, and duration to spectral features
such as Mel frequency cepstral coefficients, which compute
the short-term energy spectrum on a Mel scale to higher
level descriptors such as statistical functionals over LLD
trajectories (e.g., the extended Geneva minimalistic acoustic
parameter set; see Eyben et al., 2016) all the way up to
deep learning based features that are not explicitly depen-
dent on expert knowledge (for a comprehensive overview,
see Milling et al., 2022).

Natural Language
In recent years, advances in high performance com-

puting and natural language processing (NLP)—a subdis-
cipline of AI that deals with how computers understand,
�4 Journal of Speech, Language, and Hearing Research 1–13
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process, and manipulate human languages—have played
an essential role in improving the state of the art in asses-
sing mental and neurological health state information
from text data. For example, this problem can be cast as a
text classification or sentiment analysis task, where we can
apply NLP techniques to data ranging from social media
posts to interviews to narrative writing sources and even
EHRs across languages to automatically identify early indi-
cators of mental illness and support early detection, preven-
tion, and treatment (for an extensive review of NLP for
mental health and neurodegenerative disorders, see Boschi
et al., 2017; Zhang et al., 2022). Typical features include
linguistic features (such as part-of-speech, bag-of-words, lin-
guistic inquiry and word count, sentiment/emotion scores,
semantic similarity features, and topic modeling features),
statistical features (such as n-grams, term frequency-inverse
document frequency, length of sentences or passages, and
word/document embeddings), domain knowledge features
(such as unified medical language system labels or linguistic
dictionary features), and other auxiliary features such as
social connectivity, user profile, or time-series features.

In addition to objective data about patients’ language
use, we can also capture (from a text- or speech-based signal
source) patient-reported outcome measures (PROMs), such
as what patients have to say about their disease in their own
words. This is important because existing PROMs—which
are typically standardized clinical measurement scales such
as the Parkinson's Disease Questionnaire–39 (Jenkinson
et al., 1997) for PD, or the ALS Functional Rating Scale–
Revised (ALSFRS-R; Cedarbaum et al., 1999) for ALS—
are often not fine-grained enough to capture disease severity
in sufficient granularity (see, e.g., Allison et al., 2017). We
can address this granularity problem by allowing patients to
describe the problems that bother them the most with respect
to their disease, along with how these affect their daily func-
tioning (Shoulson et al., 2022).
Dialog
Interactive conversational systems allow us to estimate

deficits in turn-taking and pragmatics aspects of discourse
that are affected in neurological disorders such as frontotem-
poral dementia, AD, and TBI; mental health disorders such
as bipolar disorder, clinical depression, and schizophrenia; or
neurodevelopmental disorders such as autism. For instance,
Nasreen et al. (2021) showed that interactional features such
as silent pauses within and between speaker turns, turn
switches per minute, standardized phonation time, and turn
length are key features of AD conversations, and can classify
AD patient conversations versus non–AD patient conversa-
tions with 83% accuracy. Rousseaux et al. (2010) demon-
strated that TBI affected both patients verbal (fluency, intel-
ligibility, and pragmatics) as well as nonverbal (impaired
prosody) communication. Aldeneh et al. (2019) showed that
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



high-level dialogue features can be used to quantify interac-
tion dynamics in clinical interviews, highlighting how changes
in mood episodes can significantly affect the values of the fea-
tures. Examples of such features include number, duration
and frequency of turns, and turn-switches.

Oro-Facial, Limb, and Full Body Movement
Recent developments in computer vision, real-time

processing, and feature analysis have allowed image and
video to add versatility to the assessment of neurological
and mental health states. For example, research has
shown that orofacial video analysis during facial gestures
and speech provides clinically useful information for asses-
sing neurological conditions such as bulbar ALS (Bandini
et al., 2018; Guarin et al., 2022; Neumann et al., 2021) or
mental health conditions such as schizophrenia (Richter
et al., 2022). Moreover, video allows capture of motor
aspects of production (such as finger tapping, see, e.g., Khan
et al., 2014; or body pose to quantify gait and balance, see,
e.g., Sabo et al., 2020), useful in understanding disorders of
neurocognition and movement such as PD and HD. Fur-
thermore, video data allow us to probe specific aspects of
micro expression and/or emotion change in patients, both in
neurological (Gomez et al., 2023) and mental health condi-
tions (Siam et al., 2022). In addition to video, signals from
sensors like accelerometers and gyroscopes can accurately
track body movements (or lack thereof, see Kim et al., 2019;
Majumder et al., 2017; Vegesna et al., 2017), while passive
radio-wave-based sensors can unintrusively monitor gait,
home activity, and time in bed for patients with PD and
dementia (Kabelac et al., 2019). Still, other novel remote
assessments that use signal input from tablets/touchscreens
and digital pens such as digital clock drawing tests or hand-
writing analyses have also shown high sensitivity to screening
of neurodegenerative diseases such as AD and PD (Öhman
et al., 2021; Vessio, 2019).

Eye Gaze
The advent of wearable eye tracking has demon-

strated exciting potential to contribute to pervasive health
monitoring and understanding of eye movement pathologies,
backed up by a growing body of research in experimental
psychology and clinical neuroscience finding strong links
between abnormal eye movements and neurological disor-
ders (such as PD, HD, MS, AD, and other dementias; see
Anderson & MacAskill, 2013, and Vidal et al., 2012, for
more details). Saccadic features and smooth pursuit move-
ments are of particular relevance for mental health monitor-
ing. While the improvement of webcam video-based eye-
gaze tracking allows us to bring such technology to everyday
devices (e.g., Tisdale et al., 2023), there is a need to develop
standards for performance, calibration, and evaluation of
gaze tracking systems and overcome limitations arising due
to camera quality, random illumination changes, patients
Downloaded from: https://pubs.asha.org 73.241.106.59 on 07/10/2024, T
wearing glasses, head movement/distance, and display prop-
erties across devices (Kar & Corcoran, 2017).

Cardiopulmonary and Other Related
Physiological Signals

Recent research has explored multiple methods for
remote measurement of cardiovascular and cardiopulmo-
nary signals using sensors (see Al-Naji et al., 2017;
Majumder et al., 2017). Recent work has also explored
multiple approaches toward spirometry, or the monitoring
of respiratory function, via wearable and remote electron-
ics (Vitazkova et al., 2024). While completely remote and
unsupervised spirometry would be both impactful and
desirable, recent research has indicated that the variability
and accuracy of measurement is still not nearly as good as
in-clinic supervised spirometry to warrant widespread
adoption (Anand et al., 2023). That being said, as
mentioned earlier, speech audio analysis can be used as a
viable alternative to spirometry for remote assessment
(Stegmann et al., 2021; Vatanparvar et al., 2021). Yet, other
sensors measure variation in skin conductance via electro-
dermal activity or galvanic skin response that reflects the
activity of the sympathetic nervous system and provides a
simple, sensitive, and reliable parameter for assessing the
sympathetic nervous activities associated with stress and
emotion (see Majumder et al., 2017, for a review).

Neural Signals
While neural signals recorded via EEG, magnetic

resonance imaging, x-rays, computational tomography,
positron emission tomography, and so forth have long
been used to obtain gold standard biomarker measure-
ments for the diagnosis and assessment of neurological
disorders, the field of portable neural signal measurement
for remote assessment and monitoring is still in its
infancy. However, recent advancements in portable EEG
can potentially allow us to understand how specific brain
areas and neural activity are impacted in neurological and
mental health in a manner that is much more accessible
than in-clinic versions. For example, Gottlibe et al. (2020)
recently showed that 10-min epochs of EEG recordings
measured using a portable EEG device can statistically
differentiate patients diagnosed with ischemic stroke from
nonstroke patients. Therefore, while this field is still devel-
oping, it has exciting potential to revolutionize the future
of automated remote assessment.
Findings

Advantages of Combining Multiple Modalities

This section motivates the use of multimodal tech-
nologies for remote health assessment with a four-pronged
Ramanarayanan: Multimodal Remote Health Assessment 5
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set of reasons: improved scientific interpretability, improved
performance on downstream tasks such as early detection
and progress monitoring, improved technological robust-
ness, and improved user experience (UX).

Improved Interpretability
Speech-based digital biomarkers computed from

multiple modalities can serve as windows into mental and
neurological health because speech can be viewed as a
diagnostic pathway within a biopsychosocial framework
(Engel, 1977; Ramanarayanan et al., 2023). The underly-
ing assumption of this viewpoint, supported by multiple
studies on AD (cognitive domain); post-stroke aphasia
(linguistic domain); depression (affective domain); ALS,
PD, and other movement disorders (motoric domain); and
face transplants (anatomic domain), is that multiple
domains—cognitive, linguistic, affective, motoric, and
anatomical—have an influence on speech and orofacial
motor output that can in turn be measured by various
multimodal speech features. Therefore, combining infor-
mation from features drawn from multiple modalities can
improve clinical interpretability. For example, Cohen
et al. (2023) showed that when assessing for clinical
depression and suicidality, speech acoustic (such as F0 or
percent pause time), orofacial (such as velocity and accel-
eration of the lips), and text (such as relative probabilities
of occurrence of specific words or phrases) features were,
in turn, the best predictors of depression, anxiety, suicide
risk, respectively, and therefore add complementary infor-
mation toward understanding disease state. Moreover, for
neurological disorders such as ALS, which can involve
multifocal symptoms such as impaired gross and fine limb
motor function (for limb onset of the disease) and
impaired speech, swallowing and respiration (bulbar
onset), multimodal approaches combining speech, and
orofacial information allow us to obtain a more holistic
picture of disease state (e.g., Neumann et al., 2021). We
could further combine this with sensors that capture limb
motor function (e.g., Gupta et al., 2023; Vieira et al.,
2022) to improve this picture even further. And this, in
turn, could give clinicians, caregivers, and clinical trialists
more information for diagnosis or intervention.

Improved Performance
Over and above improved interpretability, a compel-

ling practical reason to use information and features com-
puted from multiple modalities is that the combination
thereof often performs better at various ML tasks than
the individual features alone. Such tasks could include
classification (i.e., discriminating one or more disorder
classes from each other or from healthy controls; see,
e.g., Neumann et al., 2021, in ALS, Jiang et al., 2024, and
Cohen et al., 2023, in depression and anxiety; Richter
et al., 2022, in schizophrenia; Escobar-Grisales et al., 2023,
�6 Journal of Speech, Language, and Hearing Research 1–13
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in PD; Talkar et al., 2020, in TBI; Roesler et al., in press,
in MCI), regression (i.e., predicting a given clinical score
of interest; see, e.g., Neumann et al., 2021, in ALS), or
clustering (i.e., stratifying health cohorts or disease pro-
gression states of interest; see, e.g., Severson et al., 2021,
in PD), among others. In all these use cases, combining
information from multiple modalities—primarily speech,
orofacial or full body movement, and natural language—
results in a significantly better performance than either of
those modalities in isolation. For example, Talkar et al.
(2020) reports a 6% absolute improvement in performance
in classifying patients with mild TBI from healthy controls
when combining information from speech and gait as
compared to the best performing individual modality
(speech), while Escobar-Grisales et al. (2023) reports that
a multimodal approach combining speech and language
features for classifying PD patients from healthy controls
outperforms the best unimodal approach (speech) by 6%
as well. Neumann et al. (2021) reports a similar pattern of
results when applied to a regression task, showing that in
a sample of 54 ALS patients, combining features derived
from both speech and orofacial movement contributed
more predictive power in predicting the ALSFRS-R score
than considering the individual modalities alone.

Improved Robustness
Information from multiple modalities allows us to

improve technology robustness because they can capture
either complementary or redundant information. For
example, let us consider the case of voice activity detec-
tion (VAD). VAD modules are important components of
speech processing and dialog systems that identify the seg-
ments of the signal that contain speech from those that
contain only noise and interference in offline, and addi-
tionally determine when the current speaker has finished
speaking in real-time systems, so that downstream process-
ing (speech recognition, spoken language understanding,
dialog management, etc.) can commence, in turn, allowing
the dialog system to respond appropriately (Liscombe
et al., 2021, 2023). Multiple studies have demonstrated the
robustness and superiority of VAD performance when
multiple modalities (speech audio, orofacial video that
captures lip opening) are combined as compared to using
a single modality alone, because each modality provides
complementary information (Ariav & Cohen, 2019; Tao
& Busso, 2019). In this manner, multimodal systems are
also more fault-tolerant as compared to their unimodal
counterparts; for instance, if the data stream from one
modality (say for instance, speech) is missing, corrupted,
or otherwise unreliable due to technical reasons, this
would cripple a unimodal system based solely on that
modality, while a multimodal system could still function
based on data streams from other modalities (such as oro-
facial video).
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 



Improved Engagement and UX
Using multimodal technologies further allows us to

collect higher quality data from more engaged and moti-
vated participants as compared to unimodal methods, such
as text-based questionnaires. Virtual humans—computer-
generated characters that demonstrate many of the same
properties as humans in face-to-face conversation including
the ability to produce and respond to verbal and nonverbal
communication (also referred to as virtual agents, embod-
ied conversational agents, or avatars in the literature)—
have been shown to improve retention and UX, especially
in young (where they provide a context for the elicitation
of social communicative behavior in child–machine interac-
tions, useful, e.g., in autism; see Chaspari et al., 2012;
Kothare et al., 2021; Narayanan & Potamianos, 2002) and
elderly populations (e.g., people with dementia; see Shaked,
2017; Tanaka et al., 2017). Furthermore, dialog-capable
multimodal systems allow for interactive responses to
patient queries/responses, which improves the efficacy, util-
ity, and UX of the interaction (see, e.g., Yu et al., 2019).

Case Study of A Real-World Multimodal
Implementation: The Modality Platform

The Modality platform, powered by a cloud-based
multimodal dialog system, employs a virtual human
guide—note there is no live clinician involved—to conduct
structured conversational interactions with participants
for active monitoring and remote health assessment
(Ramanarayanan et al., 2023; Suendermann-Oeft et al.,
2019; see Figure 2). Participants can start a conversation
with the virtual human guide, Tina, using any internet-
connected device equipped with a microphone, speaker,
and webcam—be it a phone, tablet, or laptop/desktop
computer—via a personalized web link. At the beginning
of the conversational assessment, tests of the speaker,
Figure 2. The Modality multimodal dialog platform for remote patient asse
an interactive conversation, record their audio and video signals, and e
Patient Report Of Problems.
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microphone, and camera need to be passed to ensure that
the participants’ devices are correctly configured so that the
collected data have sufficient quality. Once all device tests
pass, Tina guides participants through a customizable
sequence of tasks that elicit speech and facial behaviors, such
as vowel phonation, counting up of numbers in a single
breath, repeating consonant–vowel–consonant words, diado-
chokinesis, reading sentences and passages, picture descrip-
tion, and production of spontaneous speech on a topic of
their choice. Multimodal analytics modules automatically
extract features (see Table 1) that capture information from
speech acoustic (e.g., energy, timing, voice quality, spectral),
textual (e.g., lexico-semantic, sentiment), orofacial (e.g.,
articulatory kinematics, range of motion, eye and facial
movement), limb motor (e.g., finger tapping kinematics),
eye-gaze, and body pose (e.g., balance) modalities during
these tasks. Tina can also administer tasks that probe cogni-
tive abilities of participants—such as working memory, exec-
utive function, attention, and word fluency—using measures
that capture reaction times, recall accuracy, eye gaze sac-
cades, and fixations. Finally, participants respond to the
Patient Report Of Problems, an instrument that allows them
to describe their symptoms and severity in their own words,
as well as other clinical survey instruments of interest. We
then classify these verbatim responses into multiple, clini-
cally relevant symptoms using a multilabel text classification
deep neural network model trained on data collected from
over 25,000 patients with PD (Shoulson et al., 2022).

The Modality platform exploits the four advantages
of multimodality mentioned earlier—improved interpret-
ability, performance, UX, and robustness. For instance,
since the Modality platform extracts information from mul-
tiple modalities—speech, text, orofacial, limb motor, eye-
gaze, and body pose, in addition to patient self-reports of
their problems—one can combine this information for
ssment uses a virtual human guide, Tina, to engage participants in
xtract multiple modalities of health information therefrom. PROP =
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Table 1. Overview of signal sources, modalities of health information, domains captured within each of these modalities and exemplar fea-
tures extracted by the Modality platform.

Signal source Modality Domain Exemplar features

Audio Speech Energy timing Shimmer (%), intensity (dB), signal-to-noise ratio (dB)
speaking and articulation duration (s), articulation and speaking rate,

percent pause time (%), canonical timing agreement (%)

Voice quality
frequency

Cepstral peak prominence (dB), harmonics-to-noise ratio (dB)
mean, max., min. Fundamental frequency (Hz), first three formants (Hz),

slope of 2nd formant (Hz/s), jitter (%)

Cognition Reaction times and percentage of correct words (immediate and delayed
word recall), digit span forward/backward score (ranges from 0 to 2)

Respiration Breathing Maximum phonation time on a single breath (sec.)

Text Natural Language Lexical Word count, percentage of content words (%), noun rate, verb rate,
pronoun rate, noun-to-verb ratio, noun-to-pronoun ratio, closed class
word ratio, idea density

Sentiment Positive cosine similarity, negative cosine similarity

Patient Report Of
Problems

Clinical symptom probabilities (predicted by trained ML model) based on
responses to: “Tell us, in your own words, what bothers you the most
about your condition? How does this affect your daily functioning? What
makes this better or worse?”

Video Body Limb motoric Finger tapping rate and duration, jitter and shimmer

Balance & body
pose

Time from sit to stand as measured by the Berg Balance Scale

Orofacial Mouth (distances) Lip aperture/opening, lip width, mouth surface area

Lip/jaw movement Mean symmetry ratio between left and right half of the mouth

Oro-motor exam Velocity, acceleration, jerk, and speed of lower lip and jaw center

Eyes Range of motion of lips and jaw, head pose
number of eye blinks per second, eye opening, vertical displacement of

eyebrows

Eye gaze Saccade rates, reaction times and fixation durations for smooth pursuit,
saccade, free and directed image exploration, and congruent and
incongruent Stroop tasks

Cognition Accuracy of three step tasks (touch three points on the face in a specified
order)

Note. Observe the one to many mapping between signal sources and modalities. For example, both speech and respiratory information can
be derived from audio. The text modality (and corresponding features) is derived from the speech through automatic speech recognition soft-
ware. For visual features, functionals (minimum, maximum, average) are applied to produce one value across all video frames of an utterance.
Unless otherwise noted in parentheses, all features are unitless. ML = machine learning.

5https://academy.pubs.asha.org/2020/08/how-will-artificial-intelligence-
reshape-speech-language-pathology-services-and-practice-in-the-future/.
enhanced clinical interpretability and a more holistic picture
of disease state. Multiple research studies have demon-
strated the clinical validity and performance benefits of the
Modality platform, combining information from multiple
modalities for remote assessments at scale in a variety of
domains, including ALS early diagnosis and progression
tracking (Kothare, Neumann, et al., 2023; Neumann et al.,
2021), PD (Kothare et al., 2022), schizophrenia (Richter
et al., 2022), depression (Cohen et al., 2023; Neumann et al.,
2023), MCI (Roesler et al., in press), and autism (Kothare
et al., 2021). Moreover, the use of the animated virtual
human guide, Tina, to guide participants through interactive
conversations has been demonstrated to improve UX
(Kothare, Habberstad, et al., 2023). These advantages make
the platform well-suited for adoption in clinical care and clini-
cal trials because it allows for more frequent, objective remote
assessments and finer-grained resolution of features on contin-
uous scales, while mitigating the reliability issues that plague
subjective evaluations. These factors, in turn, lead to more
�8 Journal of Speech, Language, and Hearing Research 1–13
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effective treatment and improved health and communication
outcomes.5 Importantly, the Modality platform monitors
patients actively, only when they consent to undertake the
assessment, unlike passive monitoring technologies such as
sensors and wearables that can potentially track them all the
time, potentially bringing with it privacy concerns.
Discussion and Outlook

Telehealth and remote patient assessments offer an
exciting opportunity to improve health care delivery and
patient outcomes because they can be performed remotely,
as often as required, in an objective manner, and at rela-
tively lower cost as compared to in-clinic assessments. This
review article has argued that integrating multiple
erms of Use: https://pubs.asha.org/pubs/rights_and_permissions 
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modalities into a single platform for the purpose of remote
clinical assessment can be more effective and lead to better
clinical outcomes than using any of these data streams in
isolation, with a four-pronged set of motivating reasons:
improved scientific interpretability, improved performance
on downstream health applications such as early detection
and progress monitoring, improved technological robust-
ness, and improved UX. Given the ease of access to smart-
phones and other mobile devices that allow remote collec-
tion of audio, text, and video signals, such multimodal
technologies stand particularly well-equipped to assess dis-
orders of communication associated with neurological and
mental disease. Leveraging such multimodal data along
with recent advances in AI has the potential to accelerate
progress toward personalized precision health, digital clini-
cal trials and digital twin technologies, remote health moni-
toring via a “hospital-at-home,” and virtual AI health assis-
tance (Acosta et al., 2022). It is also important to temper
the promise of such multimodal technologies with a realis-
tic appraisal of the open challenges and considerations for
real-world deployment of such multimodal technologies.
Ramanarayanan et al. (2022) provide a comprehensive set
of challenges and requirements for the adoption of digital
biomarkers, including robustness in the face of many differ-
ent conditions that affect signals from different modalities
differently, robustness to atypical speech diversity, heteroge-
neity and comorbidities involved in progression of disease,
recording environments and application settings, and gener-
alizability and statistical power of models as promoted by
abundant, good-quality training data. There are additional
implementation, modeling, and privacy challenges to over-
come when AI is added to the mix (Acosta et al., 2022).
Over and above these, Dorsey and Topol (2016) point out
overarching practical challenges, including, but not limited
to, economic issues (reimbursement, insurance coverage),
clinical issues (potential for lowering quality of care, poten-
tial for abuse, fragmentation of care), legal issues (licensure
laws, liability concerns), and social issues (differential access
to technologies based on socioeconomic background).
Working as a community to address these gaps, while har-
nessing the power of the rapidly evolving digital
revolution—characterized by an increasing number of high-
fidelity signal measurement techniques, powerful cloud-
based computing and storage, and outage-robust network
connectivity—will, in turn, accelerate progress toward the
next generation of multimodal digital medicine for preci-
sion clinical trials and personalized health care.
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